IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.04900.html
   My bibliography  Save this paper

Finite-Sample Distortion in Kernel Specification Tests: A Perturbation Analysis of Empirical Directional Components

Author

Listed:
  • Cui Rui
  • Li Yuhao
  • Song Xiaojun

Abstract

This paper provides a new theoretical lens for understanding the finite-sample performance of kernel-based specification tests, such as the Kernel Conditional Moment (KCM) test. Rather than introducing a fundamentally new test, we isolate and rigorously analyze the finite-sample distortion arising from the discrepancy between the empirical and population eigenspaces of the kernel operator. Using perturbation theory for compact operators, we demonstrate that the estimation error in directional components is governed by local eigengaps: components associated with small eigenvalues are highly unstable and contribute primarily noise rather than signal under fixed alternatives. Although this error vanishes asymptotically under the null, it can substantially degrade power in finite samples. This insight explains why the effective power of omnibus kernel tests is often concentrated in a low-dimensional subspace. We illustrate how truncating unstable high-frequency components--a natural consequence of our analysis--can improve finite-sample performance, but emphasize that the core contribution is the diagnostic understanding of \textit{why} and \textit{when} such instability occurs. The analysis is largely non-asymptotic and applies broadly to reproducing kernel Hilbert space-based inference.

Suggested Citation

  • Cui Rui & Li Yuhao & Song Xiaojun, 2025. "Finite-Sample Distortion in Kernel Specification Tests: A Perturbation Analysis of Empirical Directional Components," Papers 2506.04900, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2506.04900
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.04900
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    2. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    3. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    4. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    5. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhao Li, 2025. "Model Checks in a Kernel Ridge Regression Framework," Papers 2505.01161, arXiv.org.
    2. Sun, Shuang & Song, Zening & Song, Xiaojun, 2025. "Unified specification tests in partially linear time series models," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    3. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    4. Yongzhen Feng & Jie Li & Xiaojun Song, 2025. "Testing linearity in semi-functional partially linear regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(3), pages 786-814, September.
    5. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    6. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    7. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    8. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.
    9. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.
    10. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2022. "Optimal minimax rates against nonsmooth alternatives [Optimal testing for additivity in multiple nonparametric regression]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 322-339.
    11. Sun, Zhihua & Chen, Feifei & Zhou, Xiaohua & Zhang, Qingzhao, 2017. "Improved model checking methods for parametric models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 147-161.
    12. Guo, Xu & Li, Gao Rong & Wong, Wing Keung, 2014. "Specification Testing of Production Frontier Function in Stochastic Frontier Model," MPRA Paper 57999, University Library of Munich, Germany.
    13. Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    14. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2023. "Optimal minimax rates of specification testing with data-driven bandwidth," Econometric Reviews, Taylor & Francis Journals, vol. 42(6), pages 487-512, June.
    15. Kloodt, Nick & Neumeyer, Natalie, 2020. "Specification tests in semiparametric transformation models — A multiplier bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    16. Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.
    17. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    18. Zhihua Sun & Dongshan Luo & Xiaohua Zhou & Qingzhao Zhang, 2021. "Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable," Statistical Papers, Springer, vol. 62(4), pages 1723-1751, August.
    19. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.
    20. Álvarez-Liébana, J. & López-Pérez, A. & González-Manteiga, W. & Febrero-Bande, M., 2025. "A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.04900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.