Author
Listed:
- Pawe{l} Magnuszewski
- Sylwester Arabas
Abstract
In this paper, we discuss a simple yet robust PDE method for evaluating path-dependent Asian-style options using the non-oscillatory forward-in-time second-order MPDATA finite-difference scheme. The valuation methodology involves casting the Black-Merton-Scholes equation as a transport problem by first transforming it into a homogeneous advection-diffusion PDE via variable substitution, and then expressing the diffusion term as an advective flux using the pseudo-velocity technique. As a result, all terms of the Black-Merton-Sholes equation are consistently represented using a single high-order numerical scheme for the advection operator. We detail the additional steps required to solve the two-dimensional valuation problem compared to MPDATA valuations of vanilla instruments documented in a prior study. Using test cases employing fixed-strike instruments, we validate the solutions against Monte Carlo valuations, as well as against an approximate analytical solution in which geometric instead of arithmetic averaging is used. The analysis highlights the critical importance of the MPDATA corrective steps that improve the solution over the underlying first-order "upwind" step. The introduced valuation scheme is robust: conservative, non-oscillatory, and positive-definite; yet lucid: explicit in time, engendering intuitive stability-condition interpretation and inflow/outflow boundary-condition heuristics. MPDATA is particularly well suited for two-dimensional problems as it is not a dimensionally split scheme. The documented valuation workflow also constitutes a useful two-dimensional case for testing advection schemes featuring both Monte Carlo solutions and analytic bounds. An implementation of the introduced valuation workflow, based on the PyMPDATA package and the Numba Just-In-Time compiler for Python, is provided as free and open source software.
Suggested Citation
Pawe{l} Magnuszewski & Sylwester Arabas, 2025.
"Path-dependent option pricing with two-dimensional PDE using MPDATA,"
Papers
2505.24435, arXiv.org.
Handle:
RePEc:arx:papers:2505.24435
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.24435. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.