IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.19276.html
   My bibliography  Save this paper

A General Theory of Risk Sharing

Author

Listed:
  • Vasily Melnikov

Abstract

We introduce a new paradigm for risk sharing that generalizes earlier models based on discrete agents and extends them to allow for sharing risk within a continuum of agents. Agents are represented by points of a measure space and have potentially heterogeneous risk preferences modeled by risk measures. The existence of risk minimizing allocations is proved when constrained to satisfy economically convincing conditions. In the unconstrained case, we derive the dual representation of the value function using a Strassen-type theorem for the weak-star topology. These results are illustrated by explicit formulas when risk preferences are within the family of entropic and expected shortfall risk measures.

Suggested Citation

  • Vasily Melnikov, 2025. "A General Theory of Risk Sharing," Papers 2505.19276, arXiv.org.
  • Handle: RePEc:arx:papers:2505.19276
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.19276
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    2. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.
    3. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michail Anthropelos & Gordan Zitkovic, 2009. "Partial Equilibria with Convex Capital Requirements: Existence, Uniqueness and Stability," Papers 0901.3318, arXiv.org.
    2. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    3. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    4. Michail Anthropelos & Gordan Žitković, 2010. "Partial equilibria with convex capital requirements: existence, uniqueness and stability," Annals of Finance, Springer, vol. 6(1), pages 107-135, January.
    5. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    6. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    7. Kiesel Swen & Rüschendorf Ludger, 2014. "Optimal risk allocation for convex risk functionals in general risk domains," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 335-365, December.
    8. Bogdan Grechuk & Michael Zabarankin, 2012. "Optimal risk sharing with general deviation measures," Annals of Operations Research, Springer, vol. 200(1), pages 9-21, November.
    9. Mao, Tiantian & Hu, Jiuyun & Liu, Haiyan, 2018. "The average risk sharing problem under risk measure and expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 170-179.
    10. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    11. Bogdan Grechuk & Michael Zabarankin, 2017. "Synergy effect of cooperative investment," Annals of Operations Research, Springer, vol. 249(1), pages 409-431, February.
    12. Grechuk, Bogdan, 2015. "The center of a convex set and capital allocation," European Journal of Operational Research, Elsevier, vol. 243(2), pages 628-636.
    13. Felix-Benedikt Liebrich, 2024. "Risk sharing under heterogeneous beliefs without convexity," Finance and Stochastics, Springer, vol. 28(4), pages 999-1033, October.
    14. Kiesel Swen & Rüschendorf Ludger, 2009. "Characterization of optimal risk allocations for convex risk functionals," Statistics & Risk Modeling, De Gruyter, vol. 26(4), pages 303-319, July.
    15. Acciaio, Beatrice & Svindland, Gregor, 2009. "Optimal risk sharing with different reference probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 426-433, June.
    16. Matteo Burzoni & Cosimo Munari & Ruodu Wang, 2020. "Adjusted Expected Shortfall," Papers 2007.08829, arXiv.org, revised Aug 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.19276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.