IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.14345.html
   My bibliography  Save this paper

Integrating LLM-Generated Views into Mean-Variance Optimization Using the Black-Litterman Model

Author

Listed:
  • Youngbin Lee
  • Yejin Kim
  • Suin Kim
  • Yongjae Lee

Abstract

Portfolio optimization faces challenges due to the sensitivity in traditional mean-variance models. The Black-Litterman model mitigates this by integrating investor views, but defining these views remains difficult. This study explores the integration of large language models (LLMs) generated views into portfolio optimization using the Black-Litterman framework. Our method leverages LLMs to estimate expected stock returns from historical prices and company metadata, incorporating uncertainty through the variance in predictions. We conduct a backtest of the LLM-optimized portfolios from June 2024 to February 2025, rebalancing biweekly using the previous two weeks of price data. As baselines, we compare against the S&P 500, an equal-weighted portfolio, and a traditional mean-variance optimized portfolio constructed using the same set of stocks. Empirical results suggest that different LLMs exhibit varying levels of predictive optimism and confidence stability, which impact portfolio performance. The source code and data are available at https://github.com/youngandbin/LLM-MVO-BLM.

Suggested Citation

  • Youngbin Lee & Yejin Kim & Suin Kim & Yongjae Lee, 2025. "Integrating LLM-Generated Views into Mean-Variance Optimization Using the Black-Litterman Model," Papers 2504.14345, arXiv.org.
  • Handle: RePEc:arx:papers:2504.14345
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.14345
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoontae Hwang & Yaxuan Kong & Stefan Zohren & Yongjae Lee, 2025. "Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization," Papers 2502.00828, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Wei & Luojia Liu, 2025. "Are Large Language Models Good In-context Learners for Financial Sentiment Analysis?," Papers 2503.04873, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.14345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.