IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.14345.html
   My bibliography  Save this paper

LLM-Enhanced Black-Litterman Portfolio Optimization

Author

Listed:
  • Youngbin Lee
  • Yejin Kim
  • Juhyeong Kim
  • Suin Kim
  • Yongjae Lee

Abstract

The Black-Litterman model addresses the sensitivity issues of tra- ditional mean-variance optimization by incorporating investor views, but systematically generating these views remains a key challenge. This study proposes and validates a systematic frame- work that translates return forecasts and predictive uncertainty from Large Language Models (LLMs) into the core inputs for the Black-Litterman model: investor views and their confidence lev- els. Through a backtest on S&P 500 constituents, we demonstrate that portfolios driven by top-performing LLMs significantly out- perform traditional baselines in both absolute and risk-adjusted terms. Crucially, our analysis reveals that each LLM exhibits a dis- tinct and consistent investment style which is the primary driver of performance. We found that the selection of an LLM is therefore not a search for a single best forecaster, but a strategic choice of an investment style whose success is contingent on its alignment with the prevailing market regime. The source code and data are available at https://github.com/youngandbin/LLM-BLM.

Suggested Citation

  • Youngbin Lee & Yejin Kim & Juhyeong Kim & Suin Kim & Yongjae Lee, 2025. "LLM-Enhanced Black-Litterman Portfolio Optimization," Papers 2504.14345, arXiv.org, revised Oct 2025.
  • Handle: RePEc:arx:papers:2504.14345
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.14345
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoontae Hwang & Yaxuan Kong & Stefan Zohren & Yongjae Lee, 2025. "Decision-informed Neural Networks with Large Language Model Integration for Portfolio Optimization," Papers 2502.00828, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoyoung Lee & Junhyuk Seo & Suhwan Park & Junhyeong Lee & Wonbin Ahn & Chanyeol Choi & Alejandro Lopez-Lira & Yongjae Lee, 2025. "Your AI, Not Your View: The Bias of LLMs in Investment Analysis," Papers 2507.20957, arXiv.org, revised Oct 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoontae Hwang & Stefan Zohren, 2025. "Signature-Informed Transformer for Asset Allocation," Papers 2510.03129, arXiv.org.
    2. Yaxuan Kong & Yoontae Hwang & Marcus Kaiser & Chris Vryonides & Roel Oomen & Stefan Zohren, 2025. "Fusing Narrative Semantics for Financial Volatility Forecasting," Papers 2510.20699, arXiv.org.
    3. Xinyu Wei & Luojia Liu, 2025. "Are Large Language Models Good In-context Learners for Financial Sentiment Analysis?," Papers 2503.04873, arXiv.org.
    4. Hoyoung Lee & Junhyuk Seo & Suhwan Park & Junhyeong Lee & Wonbin Ahn & Chanyeol Choi & Alejandro Lopez-Lira & Yongjae Lee, 2025. "Your AI, Not Your View: The Bias of LLMs in Investment Analysis," Papers 2507.20957, arXiv.org, revised Oct 2025.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.14345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.