IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.00201.html
   My bibliography  Save this paper

Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review

Author

Listed:
  • Yisong Chen
  • Chuqing Zhao
  • Yixin Xu
  • Chuanhao Nie

Abstract

This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection, a critical issue in the financial sector. Using the Kitchenham systematic literature review approach, 57 studies published between 2019 and 2024 were analyzed. The review highlights the effectiveness of various deep learning models such as Convolutional Neural Networks, Long Short-Term Memory, and transformers across domains such as credit card transactions, insurance claims, and financial statement audits. Performance metrics such as precision, recall, F1-score, and AUC-ROC were evaluated. Key themes explored include the impact of data privacy frameworks and advancements in feature engineering and data preprocessing. The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations, alongside opportunities for automation and privacy-preserving techniques such as blockchain integration and Principal Component Analysis. By examining trends over the past five years, this review identifies critical gaps and promising directions for advancing DL applications in financial fraud detection, offering actionable insights for researchers and practitioners.

Suggested Citation

  • Yisong Chen & Chuqing Zhao & Yixin Xu & Chuanhao Nie, 2025. "Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review," Papers 2502.00201, arXiv.org.
  • Handle: RePEc:arx:papers:2502.00201
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.00201
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaiswal, Rachana & Gupta, Shashank & Tiwari, Aviral Kumar, 2024. "Big data and machine learning-based decision support system to reshape the vaticination of insurance claims," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    2. Eman Nabrawi & Abdullah Alanazi, 2023. "Fraud Detection in Healthcare Insurance Claims Using Machine Learning," Risks, MDPI, vol. 11(9), pages 1-11, September.
    3. Esraa Faisal Malik & Khai Wah Khaw & Bahari Belaton & Wai Peng Wong & XinYing Chew, 2022. "Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    4. Aslam, Faheem & Hunjra, Ahmed Imran & Ftiti, Zied & Louhichi, Wael & Shams, Tahira, 2022. "Insurance fraud detection: Evidence from artificial intelligence and machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludivia Hernandez Aros & Luisa Ximena Bustamante Molano & Fernando Gutierrez-Portela & John Johver Moreno Hernandez & Mario Samuel Rodríguez Barrero, 2024. "Financial fraud detection through the application of machine learning techniques: a literature review," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
    2. Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Jay Raval & Pronaya Bhattacharya & Nilesh Kumar Jadav & Sudeep Tanwar & Gulshan Sharma & Pitshou N. Bokoro & Mitwalli Elmorsy & Amr Tolba & Maria Simona Raboaca, 2023. "RaKShA : A Trusted Explainable LSTM Model to Classify Fraud Patterns on Credit Card Transactions," Mathematics, MDPI, vol. 11(8), pages 1-27, April.
    4. Prakhar Prakhar & Rachana Jaiswal & Shashank Gupta & Syed Zamberi Ahmad & Patrice Piccardi & Gabriele Santoro, 2025. "How can we improve entrepreneurial dynamics in electric vehicle manufacturing for a sustainable future: insights using a deep learning-based hybrid PLS-SEM-ANN approach," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-45, December.
    5. Diego Zappa & Gian Paolo Clemente & Francesco Della Corte & Nino Savelli, 2023. "Editorial on the Special Issue on Insurance: complexity, risks and its connection with social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 125-130, December.
    6. Mashael Maashi & Bayan Alabduallah & Fadoua Kouki, 2023. "Sustainable Financial Fraud Detection Using Garra Rufa Fish Optimization Algorithm with Ensemble Deep Learning," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    7. Jaiswal, Rachana & Gupta, Shashank & Tiwari, Aviral Kumar, 2024. "Big data and machine learning-based decision support system to reshape the vaticination of insurance claims," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    8. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Branka Hadji Misheva & Joerg Osterrieder, 2023. "A Hypothesis on Good Practices for AI-based Systems for Financial Time Series Forecasting: Towards Domain-Driven XAI Methods," Papers 2311.07513, arXiv.org.
    10. Vecchi, Edoardo & Berra, Gabriele & Albrecht, Steffen & Gagliardini, Patrick & Horenko, Illia, 2023. "Entropic approximate learning for financial decision-making in the small data regime," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Ning Han & Wen Xu & Qian Song & Kai Zhao & Yao Xu, 2025. "Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry," Sustainability, MDPI, vol. 17(3), pages 1-17, January.
    12. Sun, Weikang & Wei, Zhiqi & Zou, Shixiang, 2024. "Exploring the impact of religious diversity on market performance and financial growth in developed economies," Research in International Business and Finance, Elsevier, vol. 71(C).
    13. Khan, Haroon ur Rashid & Bin Khidmat, Waqas & Hammouda, Amira & Muhammad, Tufail, 2023. "Machine learning in the boardroom: Gender diversity prediction using boosting and undersampling methods," Research in International Business and Finance, Elsevier, vol. 66(C).
    14. Seyed Farshid Ghorashi & Maziyar Bahri & Atousa Goodarzi, 2024. "Developing and comparing machine learning approaches for predicting insurance penetration rates based on each country," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-29, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.00201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.