IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.10009.html
   My bibliography  Save this paper

Semiparametric inference for impulse response functions using double/debiased machine learning

Author

Listed:
  • Daniele Ballinari
  • Alexander Wehrli

Abstract

We introduce a double/debiased machine learning (DML) estimator for the impulse response function (IRF) in settings where a time series of interest is subjected to multiple discrete treatments, assigned over time, which can have a causal effect on future outcomes. The proposed estimator can rely on fully nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine learning approaches to estimate IRFs. To this end, we extend the theory of DML from an i.i.d. to a time series setting and show that the proposed DML estimator for the IRF is consistent and asymptotically normally distributed at the parametric rate, allowing for semiparametric inference for dynamic effects in a time series setting. The properties of the estimator are validated numerically in finite samples by applying it to learn the IRF in the presence of serial dependence in both the confounder and observation innovation processes. We also illustrate the methodology empirically by applying it to the estimation of the effects of macroeconomic shocks.

Suggested Citation

  • Daniele Ballinari & Alexander Wehrli, 2024. "Semiparametric inference for impulse response functions using double/debiased machine learning," Papers 2411.10009, arXiv.org.
  • Handle: RePEc:arx:papers:2411.10009
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.10009
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    2. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    3. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    4. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kleibergen, F., 1996. "Reduced Rank of Regression Using Generalized Method of Moments Estimators," Other publications TiSEM 5caf1c0c-d988-4184-acf7-d, Tilburg University, School of Economics and Management.
    2. Elliott, Graham, 2020. "Testing for a trend with persistent errors," Journal of Econometrics, Elsevier, vol. 219(2), pages 314-328.
    3. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    4. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    5. E. E. Ioannidis & G. A. Chronis, 2005. "Extreme Spectra of Var Models and Orders of Near‐Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 399-421, May.
    6. Andros Gregoriou & Alexandros Kontonikas, 2006. "Inflation Targeting And The Stationarity Of Inflation: New Results From An Estar Unit Root Test," Bulletin of Economic Research, Wiley Blackwell, vol. 58(4), pages 309-322, October.
    7. Ilias Lekkos, 2003. "Cross‐sectional Restrictions on the Spot and Forward Term Structures of Interest Rates and Panel Unit Root Tests," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 30(5‐6), pages 799-828, June.
    8. Mitch Kunce, 2022. "The Tenuous Ecological Divorce and Unemployment Link with Suicide: A U.S. Panel Analysis 1968-2020," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 11(3), pages 1-2.
    9. Bunzel, Helle, 2006. "FIXED-b ASYMPTOTICS IN SINGLE-EQUATION COINTEGRATION MODELS WITH ENDOGENOUS REGRESSORS," Econometric Theory, Cambridge University Press, vol. 22(4), pages 743-755, August.
    10. Udo, Eli A. & Obiora, Isitua K., 2006. "Determinants of Foreign Direct Investment and Economic Growth in the West African Monetary Zone: A System Equations Approach," Conference papers 331519, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    12. PHILIP E.T. LEWIS & GARRY A. MacDONALD, 1993. "Testing for Equilibrium in the Australian Wage Equation," The Economic Record, The Economic Society of Australia, vol. 69(3), pages 295-304, September.
    13. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    14. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    15. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    16. Curran, Louise, 2004. "DDA - Key issues for future research," Conference papers 331313, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Olatunji A. Shobande & Simplice A. Asongu, 2021. "Has Knowledge Improved Economic Growth? Evidence from Nigeria and South Africa," Working Papers 21/059, European Xtramile Centre of African Studies (EXCAS).
    18. Gabriel Zsurkis & JoÃo Nicolau & Paulo M. M. Rodrigues, 2021. "A Re‐Examination of Inflation Persistence Dynamics in OECD Countries: A New Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 935-959, August.
    19. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    20. Mitch Kunce, 2022. "A 'Natural' Suicide Rate, Hysteresis or Suicide Persistence? Evidence from U.S. State-Level Panel Data, 1980-2020," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 11(2), pages 1-2.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.10009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.