IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.17941.html
   My bibliography  Save this paper

Neural Networks for Portfolio-Level Risk Management: Portfolio Compression, Static Hedging, Counterparty Credit Risk Exposures and Impact on Capital Requirement

Author

Listed:
  • Vikranth Lokeshwar Dhandapani
  • Shashi Jain

Abstract

In this paper, we present an artificial neural network framework for portfolio compression of a large portfolio of European options with varying maturities (target portfolio) by a significantly smaller portfolio of European options with shorter or same maturity (compressed portfolio), which also represents a self-replicating static hedge portfolio of the target portfolio. For the proposed machine learning architecture, which is consummately interpretable by choice of design, we also define the algorithm to learn model parameters by providing a parameter initialisation technique and leveraging the optimisation methodology proposed in Lokeshwar and Jain (2024), which was initially introduced to price Bermudan options. We demonstrate the convergence of errors and the iterative evolution of neural network parameters over the course of optimization process, using selected target portfolio samples for illustration. We demonstrate through numerical examples that the Exposure distributions and Exposure profiles (Expected Exposure and Potential Future Exposure) of the target portfolio and compressed portfolio align closely across future risk horizons under risk-neutral and real-world scenarios. Additionally, we benchmark the target portfolio's Financial Greeks (Delta, Gamma, and Vega) against the compressed portfolio at future time horizons across different market scenarios generated by Monte-Carlo simulations. Finally, we compare the regulatory capital requirement under the standardised approach for counterparty credit risk of the target portfolio against the compressed portfolio and highlight that the capital requirement for the compact portfolio substantially reduces.

Suggested Citation

  • Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Neural Networks for Portfolio-Level Risk Management: Portfolio Compression, Static Hedging, Counterparty Credit Risk Exposures and Impact on Capital Requirement," Papers 2402.17941, arXiv.org.
  • Handle: RePEc:arx:papers:2402.17941
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.17941
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ron Dembo & Dan Rosen, 1999. "The practice of portfolio replication. A practical overview of forward and inverse problems," Annals of Operations Research, Springer, vol. 85(0), pages 267-284, January.
    2. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    3. Georges Dionne, 2013. "Risk Management: History, Definition, and Critique," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 16(2), pages 147-166, September.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    6. N. Dokuchaev & U. Haussmann, 2001. "Optimal portfolio selection and compression in an incomplete market," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 336-345, March.
    7. Torsten Ehlers & Bryan Hardy, 2019. "The evolution of OTC interest rate derivatives markets," BIS Quarterly Review, Bank for International Settlements, December.
    8. Hamed Amini & Zachary Feinstein, 2020. "Optimal Network Compression," Papers 2008.08733, arXiv.org, revised Jul 2022.
    9. Lokeshwar, Vikranth & Bharadwaj, Vikram & Jain, Shashi, 2022. "Explainable neural network for pricing and universal static hedging of contingent claims," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    10. Iñaki Aldasoro & Torsten Ehlers, 2018. "The credit default swap market: what a difference a decade makes," BIS Quarterly Review, Bank for International Settlements, June.
    11. Sébastien Bossu & Peter Carr & Andrew Papanicolaou, 2021. "A functional analysis approach to the static replication of European options," Quantitative Finance, Taylor & Francis Journals, vol. 21(4), pages 637-655, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2023. "Data-driven Approach for Static Hedging of Exchange Traded Options," Papers 2302.00728, arXiv.org, revised Jan 2024.
    2. Purba Banerjee & Srikanth Iyer & Shashi Jain, 2023. "Multi-period static hedging of European options," Papers 2310.01104, arXiv.org, revised Oct 2023.
    3. Nteukam T., Oberlain & Planchet, Frédéric & Thérond, Pierre-E., 2011. "Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 161-175, March.
    4. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    5. Dilip Madan, 2011. "Joint risk-neutral laws and hedging," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 840-850.
    6. Scheicher, Martin, 2023. "Intermediation in US and EU bond and swap markets: stylised facts, trends and impact of the coronavirus (COVID-19) crisis in March 2020," ESRB Occasional Paper Series 24, European Systemic Risk Board.
    7. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    8. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    9. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    10. Shuxin Guo & Qiang Liu, 2019. "The Black-Scholes-Merton dual equation," Papers 1912.10380, arXiv.org.
    11. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2024. "Optimizing Neural Networks for Bermudan Option Pricing: Convergence Acceleration, Future Exposure Evaluation and Interpolation in Counterparty Credit Risk," Papers 2402.15936, arXiv.org.
    12. PeiLin Hsieh & QinQin Zhang & Yajun Wang, 2018. "Jump risk and option liquidity in an incomplete market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(11), pages 1334-1369, November.
    13. Abdou Kélani & François Quittard-Pinon, 2017. "Pricing and Hedging Variable Annuities in a Lévy Market: A Risk Management Perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(1), pages 209-238, March.
    14. Chan, Ka Kei & Kolokolova, Olga & Lin, Ming-Tsung & Poon, Ser-Huang, 2023. "Price convergence between credit default swap and put option: New evidence," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 188-213.
    15. Giacomo Bulfone & Roberto Casarin & Francesco Ravazzolo, 2021. "Corporate CDS spreads from the Eurozone crisis to COVID-19 pandemic: A Bayesian Markov switching model," Working Paper series 21-09, Rimini Centre for Economic Analysis.
    16. Hilliard, Jimmy E. & Hilliard, Jitka, 2019. "A jump-diffusion model for pricing and hedging with margined options: An application to Brent crude oil contracts," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 137-155.
    17. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    18. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    19. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    20. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.17941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.