IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.00081.html
   My bibliography  Save this paper

Synthetic Data Applications in Finance

Author

Listed:
  • Vamsi K. Potluru
  • Daniel Borrajo
  • Andrea Coletta
  • Niccol`o Dalmasso
  • Yousef El-Laham
  • Elizabeth Fons
  • Mohsen Ghassemi
  • Sriram Gopalakrishnan
  • Vikesh Gosai
  • Eleonora Kreav{c}i'c
  • Ganapathy Mani
  • Saheed Obitayo
  • Deepak Paramanand
  • Natraj Raman
  • Mikhail Solonin
  • Srijan Sood
  • Svitlana Vyetrenko
  • Haibei Zhu
  • Manuela Veloso
  • Tucker Balch

Abstract

Synthetic data has made tremendous strides in various commercial settings including finance, healthcare, and virtual reality. We present a broad overview of prototypical applications of synthetic data in the financial sector and in particular provide richer details for a few select ones. These cover a wide variety of data modalities including tabular, time-series, event-series, and unstructured arising from both markets and retail financial applications. Since finance is a highly regulated industry, synthetic data is a potential approach for dealing with issues related to privacy, fairness, and explainability. Various metrics are utilized in evaluating the quality and effectiveness of our approaches in these applications. We conclude with open directions in synthetic data in the context of the financial domain.

Suggested Citation

  • Vamsi K. Potluru & Daniel Borrajo & Andrea Coletta & Niccol`o Dalmasso & Yousef El-Laham & Elizabeth Fons & Mohsen Ghassemi & Sriram Gopalakrishnan & Vikesh Gosai & Eleonora Kreav{c}i'c & Ganapathy Ma, 2023. "Synthetic Data Applications in Finance," Papers 2401.00081, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2401.00081
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.00081
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
    2. Brian Kenji Iwana & Seiichi Uchida, 2021. "An empirical survey of data augmentation for time series classification with neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    3. Douglas J. White, 1985. "Real Applications of Markov Decision Processes," Interfaces, INFORMS, vol. 15(6), pages 73-83, December.
    4. Nicole Bäuerle & Jonathan Ott, 2011. "Markov Decision Processes with Average-Value-at-Risk criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 361-379, December.
    5. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    6. Dimitris N. Chorafas, 1995. "Financial Models and Simulation," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-37483-6.
    7. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Gospodinov & V. Karakostas & E. Papadimitriou, 2015. "Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1039-1058, November.
    2. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    3. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    4. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    5. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    6. Kuroda, Kaori & Hashiguchi, Hiroki & Fujiwara, Kantaro & Ikeguchi, Tohru, 2014. "Reconstruction of network structures from marked point processes using multi-dimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 194-204.
    7. van den Hengel, G. & Franses, Ph.H.B.F., 2018. "Forecasting social conflicts in Africa using an Epidemic Type Aftershock Sequence model," Econometric Institute Research Papers EI2018-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Chen, Victoria C. P., 1999. "Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 317-341, May.
    9. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    10. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    11. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    12. Hainaut, Donatien, 2019. "Fractional Hawkes processes," LIDAM Discussion Papers ISBA 2019016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    14. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    15. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Specification Testing in Hawkes Models," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 139-171.
    16. Zong-Zhi Lin & James C. Bean & Chelsea C. White, 2004. "A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 27-38, February.
    17. Møller, Jesper & Torrisi, Giovanni Luca, 2007. "The pair correlation function of spatial Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 995-1003, June.
    18. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.
    19. So, Mee Chi & Thomas, Lyn C. & Huang, Bo, 2016. "Lending decisions with limits on capital available: The polygamous marriage problem," European Journal of Operational Research, Elsevier, vol. 249(2), pages 407-416.
    20. Giada Adelfio & Arianna Agosto & Marcello Chiodi & Paolo Giudici, 2021. "Financial contagion through space-time point processes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 665-688, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.00081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.