IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.09176.html
   My bibliography  Save this paper

Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning

Author

Listed:
  • Anastasis Kratsios
  • Cody Hyndman

Abstract

We consider the problem of simultaneously approximating the conditional distribution of market prices and their log returns with a single machine learning model. We show that an instance of the GDN model of Kratsios and Papon (2022) solves this problem without having prior assumptions on the market's "clipped" log returns, other than that they follow a generalized Ornstein-Uhlenbeck process with a priori unknown dynamics. We provide universal approximation guarantees for these conditional distributions and contingent claims with a Lipschitz payoff function.

Suggested Citation

  • Anastasis Kratsios & Cody Hyndman, 2023. "Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning," Papers 2302.09176, arXiv.org.
  • Handle: RePEc:arx:papers:2302.09176
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.09176
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Gatheral & Alexander Schied, 2011. "Optimal Trade Execution Under Geometric Brownian Motion In The Almgren And Chriss Framework," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 353-368.
    2. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    2. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    3. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    4. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    5. Yan Dolinsky & Doron Greenstein, 2024. "A Note on Optimal Liquidation with Linear Price Impact," Papers 2402.14100, arXiv.org, revised Aug 2024.
    6. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.
    7. Diasakos, Theodoros M, 2013. "Comparative Statics of Asset Prices: the effect of other assets' risk," SIRE Discussion Papers 2013-94, Scottish Institute for Research in Economics (SIRE).
    8. Wu, Bo & Li, Lingfei, 2024. "Reinforcement learning for continuous-time mean-variance portfolio selection in a regime-switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
    9. Graewe, Paulwin & Popier, Alexandre, 2021. "Asymptotic approach for backward stochastic differential equation with singular terminal condition," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 247-277.
    10. Dammann, Felix & Ferrari, Giorgio, 2022. "Optimal Execution with Multiplicative Price Impact and Incomplete Information on the Return," Center for Mathematical Economics Working Papers 663, Center for Mathematical Economics, Bielefeld University.
    11. Dmitry B. Rokhlin & Georgii Mironenko, 2016. "Regular finite fuel stochastic control problems with exit time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 105-127, August.
    12. Kevin Patrick Darby, 2021. "Time is Money: The Equilibrium Trading Horizon and Optimal Arrival Price," Papers 2104.05844, arXiv.org.
    13. T Kruse & A Popier, 2015. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Papers 1504.01150, arXiv.org, revised Dec 2015.
    14. Eyal Neuman & Alexander Schied, 2016. "Optimal portfolio liquidation in target zone models and catalytic superprocesses," Finance and Stochastics, Springer, vol. 20(2), pages 495-509, April.
    15. Kruse, T. & Popier, A., 2016. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2554-2592.
    16. Neil A. Chriss, 2024. "Competitive equilibria in trading," Papers 2410.13583, arXiv.org, revised Oct 2024.
    17. T Kruse & A Popier, 2015. "Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting," Working Papers hal-01139364, HAL.
    18. Anthony Coache & Sebastian Jaimungal & 'Alvaro Cartea, 2022. "Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning," Papers 2206.14666, arXiv.org, revised May 2023.
    19. Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
    20. Guanxing Fu & Paul Hager & Ulrich Horst, 2024. "A Mean-Field Game of Market Entry," Rationality and Competition Discussion Paper Series 517, CRC TRR 190 Rationality and Competition.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.09176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.