IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.03733.html
   My bibliography  Save this paper

Optimal Dividends Paid in a Foreign Currency for a L\'evy Insurance Risk Model

Author

Listed:
  • Julia Eisenberg
  • Zbigniew Palmowski

Abstract

This paper considers an optimal dividend distribution problem for an insurance company where the dividends are paid in a foreign currency. In the absence of dividend payments, our risk process follows a spectrally negative L\'evy process. We assume that the exchange rate is described by a an exponentially L\'evy process, possibly containing the same risk sources like the surplus of the insurance company under consideration. The control mechanism chooses the amount of dividend payments. The objective is to maximise the expected dividend payments received until the time of ruin and a penalty payment at the time of ruin, which is an increasing function of the size of the shortfall at ruin. A complete solution is presented to the corresponding stochastic control problem. Via the corresponding Hamilton--Jacobi--Bellman equation we find the necessary and sufficient conditions for optimality of a single dividend barrier strategy. A number of numerical examples illustrate the theoretical analysis.

Suggested Citation

  • Julia Eisenberg & Zbigniew Palmowski, 2020. "Optimal Dividends Paid in a Foreign Currency for a L\'evy Insurance Risk Model," Papers 2001.03733, arXiv.org.
  • Handle: RePEc:arx:papers:2001.03733
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.03733
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicole Bäuerle & Anja Blatter & Alfred Müller, 2008. "Dependence properties and comparison results for Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(1), pages 161-186, February.
    2. Eisenberg, Julia, 2015. "Optimal dividends under a stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 259-266.
    3. Akyildirim, Erdinç & Güney, I. Ethem & Rochet, Jean-Charles & Soner, H. Mete, 2014. "Optimal dividend policy with random interest rates," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 93-101.
    4. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    5. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    6. Kim Christensen & Roel Oomen & Roberto Renò, 2018. "The drift burst hypothesis," CREATES Research Papers 2018-21, Department of Economics and Business Economics, Aarhus University.
    7. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    8. Loeffen, R.L., 2009. "An optimal dividends problem with transaction costs for spectrally negative Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 41-48, August.
    9. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    2. Yangmin Zhong & Huaping Huang, 2023. "Cash Flow Optimization on Insurance: An Application of Fixed-Point Theory," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    3. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem for Insurance Risk Models with Surplus-Dependent Premiums," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 723-742, February.
    4. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    5. Tiziano Angelis, 2020. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Finance and Stochastics, Springer, vol. 24(1), pages 71-123, January.
    6. Xiaoqing Liang & Zbigniew Palmowski, 2016. "A note on optimal expected utility of dividend payments with proportional reinsurance," Papers 1605.06849, arXiv.org, revised May 2017.
    7. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    8. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    9. Gajek, Lesław & Kuciński, Łukasz, 2017. "Complete discounted cash flow valuation," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 1-19.
    10. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    11. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    12. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.
    13. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    14. Julia Eisenberg & Yuliya Mishura, 2018. "An Exponential Cox-Ingersoll-Ross Process as Discounting Factor," Papers 1808.10355, arXiv.org.
    15. Ewa Marciniak & Zbigniew Palmowski, 2016. "On the Optimal Dividend Problem for Insurance Risk Models with Surplus-Dependent Premiums," Papers 1604.06892, arXiv.org.
    16. Masahiko Egami & Kazutoshi Yamazaki, 2010. "Solving Optimal Dividend Problems via Phase-Type Fitting Approximation of Scale Functions," Discussion papers e-10-011, Graduate School of Economics Project Center, Kyoto University.
    17. Hernández, Camilo & Junca, Mauricio & Moreno-Franco, Harold, 2018. "A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 57-68.
    18. F. Avram & Z. Palmowski & M. R. Pistorius, 2011. "On Gerber-Shiu functions and optimal dividend distribution for a L\'{e}vy risk process in the presence of a penalty function," Papers 1110.4965, arXiv.org, revised Jun 2015.
    19. Elena Bandini & Tiziano De Angelis & Giorgio Ferrari & Fausto Gozzi, 2022. "Optimal dividend payout under stochastic discounting," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 627-677, April.
    20. Camilo Hernandez & Mauricio Junca & Harold Moreno-Franco, 2016. "A time of ruin constrained optimal dividend problem for spectrally one-sided L\'evy processes," Papers 1608.02550, arXiv.org, revised May 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.03733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.