IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1910.07241.html
   My bibliography  Save this paper

Weighted Monte Carlo with least squares and randomized extended Kaczmarz for option pricing

Author

Listed:
  • Damir Filipovi'c
  • Kathrin Glau
  • Yuji Nakatsukasa
  • Francesco Statti

Abstract

We propose a methodology for computing single and multi-asset European option prices, and more generally expectations of scalar functions of (multivariate) random variables. This new approach combines the ability of Monte Carlo simulation to handle high-dimensional problems with the efficiency of function approximation. Specifically, we first generalize the recently developed method for multivariate integration in [arXiv:1806.05492] to integration with respect to probability measures. The method is based on the principle "approximate and integrate" in three steps i) sample the integrand at points in the integration domain, ii) approximate the integrand by solving a least-squares problem, iii) integrate the approximate function. In high-dimensional applications we face memory limitations due to large storage requirements in step ii). Combining weighted sampling and the randomized extended Kaczmarz algorithm we obtain a new efficient approach to solve large-scale least-squares problems. Our convergence and cost analysis along with numerical experiments show the effectiveness of the method in both low and high dimensions, and under the assumption of a limited number of available simulations.

Suggested Citation

  • Damir Filipovi'c & Kathrin Glau & Yuji Nakatsukasa & Francesco Statti, 2019. "Weighted Monte Carlo with least squares and randomized extended Kaczmarz for option pricing," Papers 1910.07241, arXiv.org.
  • Handle: RePEc:arx:papers:1910.07241
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1910.07241
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    3. Daniel Kressner & Robert Luce & Francesco Statti, 2017. "Incremental computation of block triangular matrix exponentials with application to option pricing," Papers 1703.00182, arXiv.org, revised Jun 2017.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    6. Damien Ackerer & Damir Filipovi'c & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Papers 1605.07099, arXiv.org, revised Mar 2018.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    8. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    9. Damir Filipović & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Swiss Finance Institute Research Paper Series 17-60, Swiss Finance Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotfi Boudabsa & Damir Filipović, 2022. "Machine learning with kernels for portfolio valuation and risk management," Finance and Stochastics, Springer, vol. 26(2), pages 131-172, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovi'c & Martin Larsson & Sergio Pulido, 2017. "Markov cubature rules for polynomial processes," Papers 1707.06849, arXiv.org, revised Jun 2019.
    2. Filipović, Damir & Larsson, Martin & Pulido, Sergio, 2020. "Markov cubature rules for polynomial processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1947-1971.
    3. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    4. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    5. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.
    6. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    7. Tong, Zhigang & Liu, Allen, 2022. "Pricing variance swaps under subordinated Jacobi stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Damien Ackerer & Damir Filipović, 2020. "Linear credit risk models," Finance and Stochastics, Springer, vol. 24(1), pages 169-214, January.
    9. Min-Ku Lee & See-Woo Kim & Jeong-Hoon Kim, 2022. "Variance Swaps Under Multiscale Stochastic Volatility of Volatility," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 39-64, March.
    10. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    11. Ah-Reum Han & Jeong-Hoon Kim & See-Woo Kim, 2021. "Variance Swaps with Deterministic and Stochastic Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1059-1092, April.
    12. Xi Kleisinger-Yu & Vlatka Komaric & Martin Larsson & Markus Regez, 2019. "A multi-factor polynomial framework for long-term electricity forwards with delivery period," Papers 1908.08954, arXiv.org, revised Jun 2020.
    13. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    14. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    15. Xuemei Gao & Dongya Deng & Yue Shan, 2014. "Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-6, April.
    16. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Somayeh Moazeni & Thomas F. Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    18. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    19. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    20. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.07241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.