IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.00182.html
   My bibliography  Save this paper

Incremental computation of block triangular matrix exponentials with application to option pricing

Author

Listed:
  • Daniel Kressner
  • Robert Luce
  • Francesco Statti

Abstract

We study the problem of computing the matrix exponential of a block triangular matrix in a peculiar way: Block column by block column, from left to right. The need for such an evaluation scheme arises naturally in the context of option pricing in polynomial diffusion models. In this setting a discretization process produces a sequence of nested block triangular matrices, and their exponentials are to be computed at each stage, until a dynamically evaluated criterion allows to stop. Our algorithm is based on scaling and squaring. By carefully reusing certain intermediate quantities from one step to the next, we can efficiently compute such a sequence of matrix exponentials.

Suggested Citation

  • Daniel Kressner & Robert Luce & Francesco Statti, 2017. "Incremental computation of block triangular matrix exponentials with application to option pricing," Papers 1703.00182, arXiv.org, revised Jun 2017.
  • Handle: RePEc:arx:papers:1703.00182
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.00182
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damir Filipović & Martin Larsson, 2016. "Polynomial diffusions and applications in finance," Finance and Stochastics, Springer, vol. 20(4), pages 931-972, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damir Filipovi'c & Kathrin Glau & Yuji Nakatsukasa & Francesco Statti, 2019. "Weighted Monte Carlo with least squares and randomized extended Kaczmarz for option pricing," Papers 1910.07241, arXiv.org.
    2. Al Mugahwi, Mohammed & De La Cruz Cabrera, Omar & Fenu, Caterina & Reichel, Lothar & Rodriguez, Giuseppe, 2021. "Block matrix models for dynamic networks," Applied Mathematics and Computation, Elsevier, vol. 402(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damir Filipovic & Martin Larsson & Anders B. Trolle, 2018. "On the Relation Between Linearity-Generating Processes and Linear-Rational Models," Papers 1806.03153, arXiv.org.
    2. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    3. Christa Cuchiero, 2017. "Polynomial processes in stochastic portfolio theory," Papers 1705.03647, arXiv.org.
    4. Damir Filipović, 2023. "Discount models," Finance and Stochastics, Springer, vol. 27(4), pages 933-946, October.
    5. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    6. David Itkin & Martin Larsson, 2021. "On A Class Of Rank-Based Continuous Semimartingales," Papers 2104.04396, arXiv.org.
    7. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    8. Giorgia Callegaro & Lucio Fiorin & Andrea Pallavicini, 2021. "Quantization goes polynomial," Quantitative Finance, Taylor & Francis Journals, vol. 21(3), pages 361-376, March.
    9. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    10. Larsson, Martin & Pulido, Sergio, 2017. "Polynomial diffusions on compact quadric sets," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 901-926.
    11. Christa Cuchiero & Guido Gazzani & Sara Svaluto-Ferro, 2022. "Signature-based models: theory and calibration," Papers 2207.13136, arXiv.org.
    12. Abi Jaber, Eduardo & Bouchard, Bruno & Illand, Camille, 2019. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1726-1748.
    13. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    14. Christa Cuchiero & Sara Svaluto-Ferro, 2021. "Infinite-dimensional polynomial processes," Finance and Stochastics, Springer, vol. 25(2), pages 383-426, April.
    15. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    16. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    17. repec:uts:finphd:41 is not listed on IDEAS
    18. Christa Cuchiero & Sara Svaluto-Ferro, 2019. "Infinite dimensional polynomial processes," Papers 1911.02614, arXiv.org.
    19. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    20. Schmidt, Thorsten & Tappe, Stefan & Yu, Weijun, 2020. "Infinite dimensional affine processes," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7131-7169.
    21. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.00182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.