IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.00130.html
   My bibliography  Save this paper

Hint of a Universal Law for the Financial Gains of Competitive Sport Teams. The case of Tour de France cycle race

Author

Listed:
  • Marcel Ausloos

Abstract

This short note is intended as a "Letter to the Editor" Perspective in order that it serves as a contribution, in view of reaching the physics community caring about rare events and scaling laws and unexpected findings, on a domain of wide interest: sport and money. It is apparent from the data reported and discussed below that the scarcity of such data does not allow to recommend a complex elaboration of an agent based model, - at this time. In some sense, this also means that much data on sport activities is not necessarily given in terms of physics prone materials, but it could be, and would then attract much attention. Nevertheless the findings tie the data to well known scaling laws and physics processes. It is found that a simple scaling law describes the gains of teams in recent bicycle races, like the Tour de France. An analogous case, ranking teams in Formula 1 races, is shown in an Appendix

Suggested Citation

  • Marcel Ausloos, 2017. "Hint of a Universal Law for the Financial Gains of Competitive Sport Teams. The case of Tour de France cycle race," Papers 1712.00130, arXiv.org.
  • Handle: RePEc:arx:papers:1712.00130
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.00130
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel Ausloos & Rudi Cloots & Adam Gadomski & Nikolay K. Vitanov, 2014. "Ranking structures and rank–rank correlations of countries: The FIFA and UEFA cases," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(11), pages 1-17.
    2. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yunong & Belmonte, Andrew & Griffin, Christopher, 2021. "Imitation of success leads to cost of living mediated fairness in the Ultimatum Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Anindya S. Chakrabarti & Diptesh Ghosh, 2019. "Emergence of anti-coordination through reinforcement learning in generalized minority games," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 225-245, June.
    3. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    4. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    5. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    6. Thorsten Chmura & Thomas Pitz, 2007. "An Extended Reinforcement Algorithm for Estimation of Human Behaviour in Experimental Congestion Games," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-1.
    7. Naji Massad & Jørgen Vitting Andersen, 2017. "Three different ways synchronization can cause contagion in financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01673333, HAL.
    8. Karol Wawrzyniak & Wojciech Wi'slicki, 2013. "Grand canonical minority game as a sign predictor," Papers 1309.3399, arXiv.org.
    9. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    10. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    11. Francis Bismans & Olivier Damette, 2012. "La taxe Tobin : une synthèse des travaux basés sur la théorie des jeux et l’économétrie," Working Papers of BETA 2012-09, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    12. Kalinowski, Thomas & Schulz, Hans-Jörg & Briese, Michael, 2000. "Cooperation in the Minority Game with local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(3), pages 502-508.
    13. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    14. Xin, C. & Yang, G. & Huang, J.P., 2017. "Ising game: Nonequilibrium steady states of resource-allocation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 666-673.
    15. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press, vol. 11(5), pages 895-953, November.
    16. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    17. Linde, Jona & Sonnemans, Joep & Tuinstra, Jan, 2014. "Strategies and evolution in the minority game: A multi-round strategy experiment," Games and Economic Behavior, Elsevier, vol. 86(C), pages 77-95.
    18. Mello, Bernardo A. & Cajueiro, Daniel O., 2008. "Minority games, diversity, cooperativity and the concept of intelligence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 557-566.
    19. Omurtag, Ahmet & Sirovich, Lawrence, 2006. "Modeling a large population of traders: Mimesis and stability," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 562-576, December.
    20. Giovanna Devetag & Francesca Pancotto & Thomas Brenner, 2011. "The Minority Game Unpacked: Coordination and Competition in a Team-based Experiment," LEM Papers Series 2011/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.00130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.