IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1702.02087.html
   My bibliography  Save this paper

Conditional Davis Pricing

Author

Listed:
  • Kasper Larsen
  • Halil Mete Soner
  • Gordan v{Z}itkovi'c

Abstract

We study the set of marginal utility-based prices of a financial derivative in the case where the investor has a non-replicable random endowment. We provide an example showing that even in the simplest of settings - such as Samuelson's geometric Brownian motion model - the interval of marginal utility-based prices can be a non-trivial strict subinterval of the set of all no-arbitrage prices. This is in stark contrast to the case with a replicable endowment where non- uniqueness is exceptional. We provide formulas for the end points for these prices and illustrate the theory with several examples.

Suggested Citation

  • Kasper Larsen & Halil Mete Soner & Gordan v{Z}itkovi'c, 2017. "Conditional Davis Pricing," Papers 1702.02087, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1702.02087
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1702.02087
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark P. Owen & Gordan Žitković, 2009. "Optimal Investment With An Unbounded Random Endowment And Utility‐Based Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 129-159, January.
    2. Julien Hugonnier & Dmitry Kramkov & Walter Schachermayer, 2005. "On Utility‐Based Pricing Of Contingent Claims In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 203-212, April.
    3. Freddy Delbaen & Walter Schachermayer, 1998. "A Simple Counterexample to Several Problems in the Theory of Asset Pricing," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 1-11, January.
    4. Kasper Larsen & Gordan v{Z}itkovi'c, 2011. "On utility maximization under convex portfolio constraints," Papers 1102.0346, arXiv.org, revised Feb 2013.
    5. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasper Larsen & Halil Mete Soner & Gordan Žitković, 2020. "Conditional Davis pricing," Finance and Stochastics, Springer, vol. 24(3), pages 565-599, July.
    2. Kasper Larsen & Halil Mete Soner & Gordan Žitković, 0. "Conditional Davis pricing," Finance and Stochastics, Springer, vol. 0, pages 1-35.
    3. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    4. Kasper Larsen & Halil Soner & Gordan Žitković, 2016. "Facelifting in utility maximization," Finance and Stochastics, Springer, vol. 20(1), pages 99-121, January.
    5. Kasper Larsen & Halil Mete Soner & Gordan Žitković, 2016. "Facelifting in utility maximization," Finance and Stochastics, Springer, vol. 20(1), pages 99-121, January.
    6. Keita Owari, 2011. "A Note on Utility Maximization with Unbounded Random Endowment," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(1), pages 89-103, March.
    7. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    8. Kasper Larsen & H. Mete Soner & Gordan Zitkovic, 2014. "Facelifting in Utility Maximization," Papers 1404.2227, arXiv.org.
    9. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2018. "Utility maximization with proportional transaction costs under model uncertainty," Papers 1805.06498, arXiv.org, revised Aug 2019.
    10. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2015. "Non-Arbitrage Under Additional Information for Thin Semimartingale Models," Papers 1505.00997, arXiv.org.
    11. Gu, Lingqi & Lin, Yiqing & Yang, Junjian, 2016. "On the dual problem of utility maximization in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1019-1035.
    12. Kim Weston, 2014. "Stability of Utility Maximization in Nonequivalent Markets," Papers 1410.0915, arXiv.org, revised Jun 2015.
    13. Teemu Pennanen, 2014. "Optimal investment and contingent claim valuation in illiquid markets," Finance and Stochastics, Springer, vol. 18(4), pages 733-754, October.
    14. Erhan Bayraktar & Xiang Yu, 2015. "Optimal Investment with Random Endowments and Transaction Costs: Duality Theory and Shadow Prices," Papers 1504.00310, arXiv.org, revised Aug 2018.
    15. Kallsen Jan & Kühn Christoph, 2006. "On utility-based derivative pricing with and without intermediate trades," Statistics & Risk Modeling, De Gruyter, vol. 24(4/2006), pages 1-20, October.
    16. Lingqi Gu & Yiqing Lin & Junjian Yang, 2016. "A note on utility maximization with transaction costs and random endoment: num\'eraire-based model and convex duality," Papers 1602.01070, arXiv.org, revised Feb 2016.
    17. repec:dau:papers:123456789/2318 is not listed on IDEAS
    18. Miklos Rasonyi, 2017. "On utility maximization without passing by the dual problem," Papers 1702.00982, arXiv.org, revised Mar 2018.
    19. Weidong Tian & Daisuke Yoshikawa, 2017. "Analyzing Equilibrium in Incomplete Markets with Model Uncertainty," International Review of Finance, International Review of Finance Ltd., vol. 17(2), pages 235-262, June.
    20. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    21. Yiqing Lin & Junjian Yang, 2016. "Utility maximization problem with random endowment and transaction costs: when wealth may become negative," Papers 1604.08224, arXiv.org, revised Sep 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1702.02087. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.