IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.05145.html
   My bibliography  Save this paper

Filling the gaps smoothly

Author

Listed:
  • Andrey Itkin
  • Alexander Lipton

Abstract

The calibration of a local volatility models to a given set of option prices is a classical problem of mathematical finance. It was considered in multiple papers where various solutions were proposed. In this paper an extension of the approach proposed in LiptonSepp2011 is developed by i) replacing a piecewise constant local variance construction with a piecewise linear one, and ii) allowing non-zero interest rates and dividend yields. Our approach remains analytically tractable; it combines the Laplace transform in time with an analytical solution of the resulting spatial equations in terms of Kummer's degenerate hypergeometric functions.

Suggested Citation

  • Andrey Itkin & Alexander Lipton, 2016. "Filling the gaps smoothly," Papers 1608.05145, arXiv.org.
  • Handle: RePEc:arx:papers:1608.05145
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.05145
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Itkin, Andrey, 2015. "To sigmoid-based functional description of the volatility smile," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 264-291.
    2. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Carr & A. Itkin, 2021. "An Expanded Local Variance Gamma Model," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 949-987, April.
    2. Andrey Itkin, 2020. "Geometric Local Variance Gamma Model," World Scientific Book Chapters, in: Fitting Local Volatility Analytic and Numerical Approaches in Black-Scholes and Local Variance Gamma Models, chapter 6, pages 137-173, World Scientific Publishing Co. Pte. Ltd..

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Itkin, 2020. "Geometric Local Variance Gamma Model," World Scientific Book Chapters, in: Fitting Local Volatility Analytic and Numerical Approaches in Black-Scholes and Local Variance Gamma Models, chapter 6, pages 137-173, World Scientific Publishing Co. Pte. Ltd..
    2. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    3. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    4. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    5. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    6. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    7. Aleksandar Mijatovi'c & Peter Tankov, 2012. "A new look at short-term implied volatility in asset price models with jumps," Papers 1207.0843, arXiv.org, revised Jul 2012.
    8. Martin Keller-Ressel, 2022. "W-shaped implied volatility curves in a variance-gamma mixture model," Papers 2209.14726, arXiv.org.
    9. Philip Stahl, 2022. "Asymptotic extrapolation of model-free implied variance: exploring structural underestimation in the VIX Index," Review of Derivatives Research, Springer, vol. 25(3), pages 315-339, October.
    10. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    11. Vimal Raval & Antoine Jacquier, 2021. "The Log Moment formula for implied volatility," Papers 2101.08145, arXiv.org.
    12. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    13. Arianna Mingone, 2022. "Smiles in delta," Papers 2209.00406, arXiv.org.
    14. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
    15. David Berger & Ian Dew-Becker & Stefano Giglio, 2020. "Uncertainty Shocks as Second-Moment News Shocks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(1), pages 40-76.
    16. Peter Carr & Andrey Itkin & Sasha Stoikov, 2019. "A model-free backward and forward nonlinear PDEs for implied volatility," Papers 1907.07305, arXiv.org.
    17. Tahar Ferhati, 2020. "Robust Calibration For SVI Model Arbitrage Free," Working Papers hal-02490029, HAL.
    18. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    19. Andrey Itkin, 2013. "New solvable stochastic volatility models for pricing volatility derivatives," Review of Derivatives Research, Springer, vol. 16(2), pages 111-134, July.
    20. Jaehyuk Choi & Minsuk Kwak & Chyng Wen Tee & Yumeng Wang, 2022. "A Black–Scholes user's guide to the Bachelier model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 959-980, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.05145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.