IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1607.01619.html
   My bibliography  Save this paper

Swaption Prices in HJM model. Nonparametric fit

Author

Listed:
  • V. M. Belyaev

Abstract

Closed form formulas for swaption prices in HJM model are derived. These formulas are used for nonparametric fit of deterministic forward volatility. It is demonstrated that this formula and non-parametric fit works very well and can be used to identify arbitrage opportunities

Suggested Citation

  • V. M. Belyaev, 2016. "Swaption Prices in HJM model. Nonparametric fit," Papers 1607.01619, arXiv.org, revised Apr 2017.
  • Handle: RePEc:arx:papers:1607.01619
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1607.01619
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 419-440, December.
    2. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:uts:finphd:40 is not listed on IDEAS
    2. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    3. Dwight Grant & Gautam Vora, 2006. "Extending the universality of the Heath–Jarrow–Morton model," Review of Financial Economics, John Wiley & Sons, vol. 15(2), pages 129-157.
    4. David Bolder, 2001. "Affine Term-Structure Models: Theory and Implementation," Staff Working Papers 01-15, Bank of Canada.
    5. Gupta, Anurag & Subrahmanyam, Marti G., 2000. "An empirical examination of the convexity bias in the pricing of interest rate swaps," Journal of Financial Economics, Elsevier, vol. 55(2), pages 239-279, February.
    6. San-Lin Chung & Hsiao-Fen Yang, 2005. "Pricing Quanto Equity Swaps in a Stochastic Interest Rate Economy," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(2), pages 121-146.
    7. repec:dau:papers:123456789/5374 is not listed on IDEAS
    8. Xiao Lin, 2016. "The Zero-Coupon Rate Model for Derivatives Pricing," Papers 1606.01343, arXiv.org, revised Feb 2022.
    9. Stoyan Valchev, 2004. "Stochastic volatility Gaussian Heath-Jarrow-Morton models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 347-368.
    10. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    11. Jirô Akahori & Hiroki Aoki & Yoshihiko Nagata, 2006. "Generalizations of Ho–Lee’s binomial interest rate model I: from one- to multi-factor," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 151-179, June.
    12. Peter H. Ritchken & L. Sankarasubramanian, 1992. "On Markovian representations of the term structure," Working Papers (Old Series) 9214, Federal Reserve Bank of Cleveland.
    13. Carlo Mari & Roberto Reno, 2006. "Arbitrary Initial Term Structure within the CIR Model: A Perturbative Solution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(2), pages 143-153.
    14. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    15. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    16. Kuo, I-Doun & Lin, Yueh-Neng, 2009. "Empirical performance of multifactor term structure models for pricing and hedging Eurodollar futures options," Review of Financial Economics, Elsevier, vol. 18(1), pages 23-32, January.
    17. Grant, Dwight & Vora, Gautam, 2006. "Extending the universality of the Heath-Jarrow-Morton model," Review of Financial Economics, Elsevier, vol. 15(2), pages 129-157.
    18. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    19. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    20. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    21. Patrick Hagan & Diana Woodward, 1999. "Markov interest rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(4), pages 233-260.
    22. João Pedro Vidal Nunes & Luís Alberto Ferreira De Oliveira, 2007. "Multifactor and analytical valuation of treasury bond futures with an embedded quality option," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(3), pages 275-303, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1607.01619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.