IDEAS home Printed from
   My bibliography  Save this paper

Instantaneous mean-variance hedging and instantaneous Sharpe ratio pricing in a regime-switching financial model, with applications to equity-linked claims


  • {L}ukasz Delong
  • Antoon Pelsser


We study hedging and pricing of unattainable contingent claims in a non-Markovian regime-switching financial model. Our financial market consists of a bank account and a risky asset whose dynamics are driven by a Brownian motion and a multivariate counting process with stochastic intensities. The interest rate, drift, volatility and intensities fluctuate over time and, in particular, they depend on the state (regime) of the economy which is modelled by the multivariate counting process. Hence, we can allow for stressed market conditions. We assume that the trajectory of the risky asset is continuous between the transition times for the states of the economy and that the value of the risky asset jumps at the time of the transition. We find the hedging strategy which minimizes the instantaneous mean-variance risk of the hedger's surplus and we set the price so that the instantaneous Sharpe ratio of the hedger's surplus equals a predefined target. We use Backward Stochastic Differential Equations. Interestingly, the instantaneous mean-variance hedging and instantaneous Sharpe ratio pricing can be related to no-good-deal pricing and robust pricing and hedging under model ambiguity. We discuss key properties of the optimal price and the optimal hedging strategy. We also use our results to price and hedge mortality-contingent claims with financial components (equity-linked insurance claims) in a combined insurance and regime-switching financial model.

Suggested Citation

  • {L}ukasz Delong & Antoon Pelsser, 2013. "Instantaneous mean-variance hedging and instantaneous Sharpe ratio pricing in a regime-switching financial model, with applications to equity-linked claims," Papers 1303.4082,
  • Handle: RePEc:arx:papers:1303.4082

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1303.4082. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.