IDEAS home Printed from
   My bibliography  Save this paper

Vine Constructions of Levy Copulas


  • Oliver Grothe
  • Stephan Nicklas


Levy copulas are the most general concept to capture jump dependence in multivariate Levy processes. They translate the intuition and many features of the copula concept into a time series setting. A challenge faced by both, distributional and Levy copulas, is to find flexible but still applicable models for higher dimensions. To overcome this problem, the concept of pair copula constructions has been successfully applied to distributional copulas. In this paper, we develop the pair construction for Levy copulas (PLCC). Similar to pair constructions of distributional copulas, the pair construction of a d-dimensional Levy copula consists of d(d-1)/2 bivariate dependence functions. We show that only d-1 of these bivariate functions are Levy copulas, whereas the remaining functions are distributional copulas. Since there are no restrictions concerning the choice of the copulas, the proposed pair construction adds the desired flexibility to Levy copula models. We discuss estimation and simulation in detail and apply the pair construction in a simulation study.

Suggested Citation

  • Oliver Grothe & Stephan Nicklas, 2012. "Vine Constructions of Levy Copulas," Papers 1207.4309,, revised Sep 2012.
  • Handle: RePEc:arx:papers:1207.4309

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    2. Kallsen, Jan & Tankov, Peter, 2006. "Characterization of dependence of multidimensional Lévy processes using Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1551-1572, August.
    3. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1207.4309. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.