IDEAS home Printed from
   My bibliography  Save this paper

Integral representation of martingales motivated by the problem of endogenous completeness in financial economics


  • Dmitry Kramkov

    (Carnegie Mellon and Oxford)

  • Silviu Predoiu



Let $\mathbb{Q}$ and $\mathbb{P}$ be equivalent probability measures and let $\psi$ be a $J$-dimensional vector of random variables such that $\frac{d\mathbb{Q}}{d\mathbb{P}}$ and $\psi$ are defined in terms of a weak solution $X$ to a $d$-dimensional stochastic differential equation. Motivated by the problem of \emph{endogenous completeness} in financial economics we present conditions which guarantee that every local martingale under $\mathbb{Q}$ is a stochastic integral with respect to the $J$-dimensional martingale $S_t \set \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t]$. While the drift $b=b(t,x)$ and the volatility $\sigma = \sigma(t,x)$ coefficients for $X$ need to have only minimal regularity properties with respect to $x$, they are assumed to be analytic functions with respect to $t$. We provide a counter-example showing that this $t$-analyticity assumption for $\sigma$ cannot be removed.

Suggested Citation

  • Dmitry Kramkov & Silviu Predoiu, 2011. "Integral representation of martingales motivated by the problem of endogenous completeness in financial economics," Papers 1110.3248,, revised Oct 2012.
  • Handle: RePEc:arx:papers:1110.3248

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. J. Hugonnier & S. Malamud & E. Trubowitz, 2012. "Endogenous Completeness of Diffusion Driven Equilibrium Markets," Econometrica, Econometric Society, vol. 80(3), pages 1249-1270, May.
    2. Riedel, Frank & Herzberg, Frederik, 2013. "Existence of financial equilibria in continuous time with potentially complete markets," Journal of Mathematical Economics, Elsevier, vol. 49(5), pages 398-404.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.3248. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.