IDEAS home Printed from
   My bibliography  Save this paper

Collective behavior in financial market


  • Thomas Kau^e Dal'Maso Peron
  • Francisco Aparecido Rodrigues


Financial market is an example of complex system, which is characterized by a highly intricate organization and the emergence of collective behavior. In this paper, we quantify this emergent dynamics in the financial market by using concepts of network synchronization. We consider networks constructed by the correlation matrix of asset returns and study the time evolution of the phase coherence among stock prices. It is verified that during financial crisis a synchronous state emerges in the system, defining the market's direction. Furthermore, the paper proposes a statistical regression model able to identify the topological features that mostly influence such an emergence. The coefficients of the proposed model indicate that the average shortest path length is the measurement most related to network synchronization. Therefore, during economic crisis, the stock prices present a similar evolution, which tends to shorten the distances between stocks, indication a collective dynamics.

Suggested Citation

  • Thomas Kau^e Dal'Maso Peron & Francisco Aparecido Rodrigues, 2011. "Collective behavior in financial market," Papers 1109.1167,
  • Handle: RePEc:arx:papers:1109.1167

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Durante, Daniele & Dunson, David B., 2014. "Bayesian dynamic financial networks with time-varying predictors," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 19-26.
    2. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    3. de Resende, Charlene C. & Pereira, Adriano C.M. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2017. "Investigating market efficiency through a forecasting model based on differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 199-212.
    4. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485,, revised Sep 2017.
    5. Bury, Thomas, 2014. "Predicting trend reversals using market instantaneous state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 79-91.
    6. Liu, Yi-Fang & Zhang, Wei & Xu, Hai-Chuan, 2014. "Collective behavior and options volatility smile: An agent-based explanation," Economic Modelling, Elsevier, vol. 39(C), pages 232-239.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.1167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.