IDEAS home Printed from
   My bibliography  Save this paper

Quadratic Reflected BSDEs with Unbounded Obstacles


  • Erhan Bayraktar
  • Song Yao


In this paper, we analyze a real-valued reflected backward stochastic differential equation (RBSDE) with an unbounded obstacle and an unbounded terminal condition when its generator $f$ has quadratic growth in the $z$-variable. In particular, we obtain existence, comparison, and stability results, and consider the optimal stopping for quadratic $g$-evaluations. As an application of our results we analyze the obstacle problem for semi-linear parabolic PDEs in which the non-linearity appears as the square of the gradient. Finally, we prove a comparison theorem for these obstacle problems when the generator is convex or concave in the $z$-variable.

Suggested Citation

  • Erhan Bayraktar & Song Yao, 2010. "Quadratic Reflected BSDEs with Unbounded Obstacles," Papers 1005.3565,, revised Mar 2011.
  • Handle: RePEc:arx:papers:1005.3565

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Lepeltier, J. P. & San Martin, J., 1997. "Backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 32(4), pages 425-430, April.
    2. Matoussi, Anis, 1997. "Reflected solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 347-354, June.
    3. Bayraktar, Erhan & Yao, Song, 2011. "Optimal stopping for non-linear expectations--Part II," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 212-264, February.
    4. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:spapps:v:127:y:2017:i:8:p:2586-2629 is not listed on IDEAS
    2. Keller, Christian, 2016. "Viscosity solutions of path-dependent integro-differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2665-2718.
    3. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    4. Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
    5. Bayraktar, Erhan & Yao, Song, 2017. "Optimal stopping with random maturity under nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2586-2629.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1005.3565. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.