IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1005.3565.html

Quadratic Reflected BSDEs with Unbounded Obstacles

Author

Listed:
  • Erhan Bayraktar
  • Song Yao

Abstract

In this paper, we analyze a real-valued reflected backward stochastic differential equation (RBSDE) with an unbounded obstacle and an unbounded terminal condition when its generator $f$ has quadratic growth in the $z$-variable. In particular, we obtain existence, comparison, and stability results, and consider the optimal stopping for quadratic $g$-evaluations. As an application of our results we analyze the obstacle problem for semi-linear parabolic PDEs in which the non-linearity appears as the square of the gradient. Finally, we prove a comparison theorem for these obstacle problems when the generator is convex or concave in the $z$-variable.

Suggested Citation

  • Erhan Bayraktar & Song Yao, 2010. "Quadratic Reflected BSDEs with Unbounded Obstacles," Papers 1005.3565, arXiv.org, revised Mar 2011.
  • Handle: RePEc:arx:papers:1005.3565
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1005.3565
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Yao, Song, 2017. "Optimal stopping with random maturity under nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2586-2629.
    2. Keller, Christian, 2016. "Viscosity solutions of path-dependent integro-differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2665-2718.
    3. Dingqian Sun, 2020. "The convergence rate from discrete to continuous optimal investment stopping problem," Papers 2004.14627, arXiv.org.
    4. Lin, Yiqing & Xu, Kun, 2025. "Propagation of chaos for mean-field reflected BSDEs with jumps," Statistics & Probability Letters, Elsevier, vol. 221(C).
    5. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    6. Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
    7. Edward Kim & Tianyang Nie & Marek Rutkowski, 2018. "Arbitrage-free pricing of American options in nonlinear markets," Papers 1804.10753, arXiv.org, revised Jul 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1005.3565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.