IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i3p1275-1302.html
   My bibliography  Save this article

Some results on general quadratic reflected BSDEs driven by a continuous martingale

Author

Listed:
  • Lionnet, Arnaud

Abstract

We study the well-posedness of general reflected BSDEs driven by a continuous martingale, when the coefficient f of the driver has at most quadratic growth in the control variable Z, with a bounded terminal condition and a lower obstacle which is bounded above. We obtain the basic results in this setting: comparison and uniqueness, existence, stability. For the comparison theorem and the special comparison theorem for reflected BSDEs (which allows one to compare the increasing processes of two solutions), we give intrinsic proofs which do not rely on the comparison theorem for standard BSDEs. This allows to obtain the special comparison theorem under minimal assumptions. We obtain existence by using the fixed point theorem and then a series of perturbations, first in the case where f is Lipschitz in the primary variable Y, and then in the case where f can have slightly-superlinear growth and the case where f is monotonous in Y with arbitrary growth. We also obtain a local Lipschitz estimate in BMO for the martingale part of the solution.

Suggested Citation

  • Lionnet, Arnaud, 2014. "Some results on general quadratic reflected BSDEs driven by a continuous martingale," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1275-1302.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:3:p:1275-1302
    DOI: 10.1016/j.spa.2013.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002627
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    2. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    3. Bayraktar, Erhan & Yao, Song, 2012. "Quadratic reflected BSDEs with unbounded obstacles," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1155-1203.
    4. Briand, Philippe & Confortola, Fulvia, 2008. "BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 818-838, May.
    5. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
    6. Xu, Mingyu, 2008. "Backward stochastic differential equations with reflection and weak assumptions on the coefficients," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 968-980, June.
    7. Briand, Ph. & Delyon, B. & Hu, Y. & Pardoux, E. & Stoica, L., 2003. "Lp solutions of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 108(1), pages 109-129, November.
    8. Tevzadze, Revaz, 2008. "Solvability of backward stochastic differential equations with quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 503-515, March.
    9. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:3:p:1275-1302. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.