IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.0417.html
   My bibliography  Save this paper

The Anderson-Darling test of fit for the power law distribution from left censored samples

Author

Listed:
  • H. F. Coronel-Brizio

    (Facultad de Fisica e Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Veracruzana, Mexico)

  • A. R. Hernandez-Montoya

    (Facultad de Fisica e Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Veracruzana, Mexico)

Abstract

Maximum likelihood estimation and a test of fit based on the Anderson-Darling statistic is presented for the case of the power law distribution when the parameters are estimated from a left-censored sample. Expressions for the maximum likelihood estimators and tables of asymptotic percentage points for the A^2 statistic are given. The technique is illustrated for data from the Dow Jones Industrial Average index, an example of high theoretical and practical importance in Econophysics, Finance, Physics, Biology and, in general, in other related Sciences such as Complexity Sciences.

Suggested Citation

  • H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2010. "The Anderson-Darling test of fit for the power law distribution from left censored samples," Papers 1004.0417, arXiv.org.
  • Handle: RePEc:arx:papers:1004.0417
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.0417
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Post-Print hal-00827942, HAL.
    2. Politi, Mauro & Millot, Nicolas & Chakraborti, Anirban, 2012. "The near-extreme density of intraday log-returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 147-155.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.0417. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.