IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4528-4534.html
   My bibliography  Save this article

Modeling the effects of social impact on epidemic spreading in complex networks

Author

Listed:
  • Ni, Shunjiang
  • Weng, Wenguo
  • Zhang, Hui

Abstract

We investigate by mean-field analysis and extensive simulations the effects of social impact on epidemic spreading in various typical networks with two types of nodes: active nodes and passive nodes, of which the behavior patterns are modeled according to the social impact theory. In this study, nodes are not only the media to spread the virus, but also disseminate their opinions on the virus—whether there is a need for certain self-protection measures to be taken to reduce the risk of being infected. Our results indicate that the interaction between epidemic spreading and opinion dynamics can have significant influences on the spreading of infectious diseases and related applications, such as the implementation of prevention and control measures against the infectious diseases.

Suggested Citation

  • Ni, Shunjiang & Weng, Wenguo & Zhang, Hui, 2011. "Modeling the effects of social impact on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4528-4534.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4528-4534
    DOI: 10.1016/j.physa.2011.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005917
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    3. Ni, Shunjiang & Weng, Wenguo & Shen, Shifei & Fan, Weicheng, 2008. "Epidemic outbreaks in growing scale-free networks with local structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5295-5302.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    2. Jin, Ziyang & Duan, Dongli & Wang, Ning, 2022. "Cascading failure of complex networks based on load redistribution and epidemic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    4. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    5. Wang, Xiaoyang & Wang, Ying & Zhu, Lin & Li, Chao, 2016. "A novel approach to characterize information radiation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 94-105.
    6. Pires, Marcelo A. & Crokidakis, Nuno, 2017. "Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 167-179.
    7. Youzhong Wang & Daniel Zeng & Bin Zhu & Xiaolong Zheng & Feiyue Wang, 2014. "Patterns of news dissemination through online news media: A case study in China," Information Systems Frontiers, Springer, vol. 16(4), pages 557-570, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangyoon Yi & Jinho Choi, 2012. "The organization of scientific knowledge: the structural characteristics of keyword networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 1015-1026, March.
    2. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    3. Chai, Yi & Chen, Liping & Wu, Ranchao & Sun, Jian, 2012. "Adaptive pinning synchronization in fractional-order complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5746-5758.
    4. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    5. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    6. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    7. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    8. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    9. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    10. Ma, Lili & Jiang, Xin & Wu, Kaiyuan & Zhang, Zhanli & Tang, Shaoting & Zheng, Zhiming, 2012. "Surveying network community structure in the hidden metric space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 371-378.
    11. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Jinyang Dong & Jiamou Liu & Tiezhong Liu, 2021. "The impact of top scientists on the community development of basic research directed by government funding: evidence from program 973 in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8561-8579, October.
    13. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    14. Liu, Z.X. & Chen, Z.Q. & Yuan, Z.Z., 2007. "Pinning control of weighted general complex dynamical networks with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 345-354.
    15. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    16. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
    17. Martin Rosvall & Carl T Bergstrom, 2010. "Mapping Change in Large Networks," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-7, January.
    18. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    19. Porter, Mason A. & Mucha, Peter J. & Newman, M.E.J. & Friend, A.J., 2007. "Community structure in the United States House of Representatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 414-438.
    20. Santiago, A. & Benito, R.M., 2008. "Connectivity degrees in the threshold preferential attachment model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2365-2376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4528-4534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.