IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0907.3231.html
   My bibliography  Save this paper

Phenomenology of minority games in efficient regime

Author

Listed:
  • Karol Wawrzyniak
  • Wojciech Wislicki

Abstract

We present a comprehensive study of utility function of the minority game in its efficient regime. We develop an effective description of state of the game. For the payoff function $g(x)=\sgn (x)$ we explicitly represent the game as the Markov process and prove the finitness of number of states. We also demonstrate boundedness of the utility function. Using these facts we can explain all interesting observable features of the aggregated demand: appearance of strong fluctuations, their periodicity and existence of prefered levels. For another payoff, $g(x)=x$, the number of states is still finite and utility remains bounded but the number of states cannot be reduced and probabilities of states are not calculated. However, using properties of the utility and analysing the game in terms of de Bruijn graphs, we can also explain distinct peaks of demand and their frequencies.

Suggested Citation

  • Karol Wawrzyniak & Wojciech Wislicki, 2009. "Phenomenology of minority games in efficient regime," Papers 0907.3231, arXiv.org, revised Mar 2011.
  • Handle: RePEc:arx:papers:0907.3231
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0907.3231
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2013. "Minority Games: Interacting agents in financial markets," OUP Catalogue, Oxford University Press, number 9780199686698.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0907.3231. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.