IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0712.2220.html
   My bibliography  Save this paper

Phase transition in the rich-get-richer mechanism due to finite-size effects

Author

Listed:
  • James P. Bagrow
  • Jie Sun
  • Daniel ben-Avraham

Abstract

The rich-get-richer mechanism (agents increase their ``wealth'' randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of growing scale free nets. We use two different analytical approaches, as well as numerical simulations, to study the case where the number of agents is fixed and finite (but large), and the rich-get-richer mechanism is invoked a fraction r of the time (the remainder of the time wealth is disbursed by a homogeneous process). At short times, we recover the Pareto law observed for an unbounded number of agents. In later times, the (moving) distribution can be scaled to reveal a phase transition with a Gaussian asymptotic form for r 1/2.

Suggested Citation

  • James P. Bagrow & Jie Sun & Daniel ben-Avraham, 2007. "Phase transition in the rich-get-richer mechanism due to finite-size effects," Papers 0712.2220, arXiv.org, revised May 2008.
  • Handle: RePEc:arx:papers:0712.2220
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0712.2220
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Chatterjee & B. K. Chakrabarti, 2007. "Kinetic exchange models for income and wealth distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 60(2), pages 135-149, November.
    2. Arnab Chatterjee & Bikas K. Chakrabarti, 2007. "Kinetic Exchange Models for Income and Wealth Distributions," Papers 0709.1543, arXiv.org, revised Nov 2007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Behfar, Stefan Kambiz & Turkina, Ekaterina & Cohendet, Patrick & Burger-Helmchen, Thierry, 2016. "Directed networks’ different link formation mechanisms causing degree distribution distinction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 479-491.
    2. Taalbi, Josef, 2020. "Evolution and structure of technological systems - An innovation output network," Research Policy, Elsevier, vol. 49(8).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Jian & Pan, Qiuhui & Qian, Qian & He, Mingfeng & Sun, Qilin, 2013. "A multi-agent dynamic model based on different kinds of bequests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1393-1397.
    2. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    3. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    4. Kausik Gangopadhyay, 2017. "A Survey into Evidence of Zipf’s Law among Indian Socio-Economic Variables," Working papers 223, Indian Institute of Management Kozhikode.
    5. Pavel Exner & Petr v{S}eba, 2007. "A Markov process associated with plot-size distribution in Czech Land Registry and its number-theoretic properties," Papers 0711.1836, arXiv.org, revised Dec 2007.
    6. Willis, Geoff, 2011. "Why money trickles up – wealth & income distributions," MPRA Paper 30851, University Library of Munich, Germany.
    7. Mukherjee, Sudip & Biswas, Soumyajyoti & Chatterjee, Arnab & Chakrabarti, Bikas K., 2021. "The Ising universality class of kinetic exchange models of opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    8. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    9. Yonatan Berman & Yoash Shapira & Eshel Ben-Jacob, 2015. "Modeling the Origin and Possible Control of the Wealth Inequality Surge," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    10. Bertotti, Maria Letizia & Modanese, Giovanni, 2011. "From microscopic taxation and redistribution models to macroscopic income distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3782-3793.
    11. Jan Lorenz & Fabian Paetzel & Frank Schweitzer, 2013. "Redistribution Spurs Growth by Using a Portfolio Effect on Risky Human Capital," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-13, February.
    12. Anindya S. Chakrabarti, 2017. "Scale-free distribution as an economic invariant: a theoretical approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 1-26, April.
    13. repec:osf:socarx:qgwus_v1 is not listed on IDEAS
    14. G. Toscani & C. Brugna & S. Demichelis, 2012. "Kinetic models for the trading of goods," Papers 1208.6305, arXiv.org.
    15. Takeshi Kato, 2022. "Islamic and capitalist economies: Comparison using econophysics models of wealth exchange and redistribution," Papers 2206.05443, arXiv.org, revised Sep 2022.
    16. Soriano-Hernández, P. & del Castillo-Mussot, M. & Campirán-Chávez, I. & Montemayor-Aldrete, J.A., 2017. "Wealth of the world’s richest publicly traded companies per industry and per employee: Gamma, Log-normal and Pareto power-law as universal distributions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 733-749.
    17. Rafael Wildauer & Stuart Leitch & Jakob Kapeller, 2021. "A European Wealth Tax for a Fair and Green Recovery," ICAE Working Papers 129, Johannes Kepler University, Institute for Comprehensive Analysis of the Economy.
    18. Trimborn, Torsten & Frank, Martin & Martin, Stephan, 2018. "Mean field limit of a behavioral financial market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 613-631.
    19. Sebastian Guala, 2009. "Taxes in a Wealth Distribution Model by Inelastically Scattering of Particles," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 7(1), pages 1-7.
    20. Kapeller, Jakob & Leitch, Stuart & Wildauer, Rafael, 2021. "A European wealth tax for a fair and green recovery," Greenwich Papers in Political Economy 31442, University of Greenwich, Greenwich Political Economy Research Centre.
    21. Anirban Chakraborti & Dhruv Raina & Kiran Sharma, 2016. "Can an interdisciplinary field contribute to one of the parent disciplines from which it emerged?," Papers 1605.08354, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0712.2220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.