IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0705.1302.html
   My bibliography  Save this paper

Financial Valuation of Mortality Risk via the Instantaneous Sharpe Ratio: Applications to Pricing Pure Endowments

Author

Listed:
  • Moshe A. Milevsky
  • S. David Promislow
  • Virginia R. Young

Abstract

We develop a theory for pricing non-diversifiable mortality risk in an incomplete market. We do this by assuming that the company issuing a mortality-contingent claim requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. We prove that our ensuing valuation formula satisfies a number of desirable properties. For example, we show that it is subadditive in the number of contracts sold. A key result is that if the hazard rate is stochastic, then the risk-adjusted survival probability is greater than the physical survival probability, even as the number of contracts approaches infinity.

Suggested Citation

  • Moshe A. Milevsky & S. David Promislow & Virginia R. Young, 2007. "Financial Valuation of Mortality Risk via the Instantaneous Sharpe Ratio: Applications to Pricing Pure Endowments," Papers 0705.1302, arXiv.org.
  • Handle: RePEc:arx:papers:0705.1302
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0705.1302
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Boyle, Phelim & Hardy, Mary, 2003. "Guaranteed Annuity Options," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 33(02), pages 125-152, November.
    2. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    3. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0705.1302. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.