IDEAS home Printed from https://ideas.repec.org/p/apk/doctra/2505.html
   My bibliography  Save this paper

Forecasting Nominal Exchange Rate using Deep Neural Networks

Author

Listed:
  • Jonathan Garita-Garita

    (Department of Economic Research, Central Bank of Costa Rica)

  • César Ulate-Sancho

    (Department of Economic Research, Central Bank of Costa Rica)

Abstract

This paper offers a daily-frequency analysis and short-term forecasting of Costa Rica’s foreign currency market using deep neural network algorithms. These algo-rithms efficiently integrates multiple high-frequency data to capture trends, seasonal patterns, and daily movements in the exchange rate from 2017 to March 2025. The results indicate that these models excels in predicting the observed exchange rate up to five days in advance, outperforming traditional time series forecasting methods in terms of accuracy. *** Resumen: Este artículo realiza un análisis de alta frecuencia del mercado de divisas de Costa Rica utilizando algoritmos de redes neuronales profundas. Se emplean datos diarios de acceso público de MONEX desde 2017 hasta marzo de 2025 para identificar quiebres de tendencia, patrones estacionales y la importancia relativa de las variables explicativas que determinan los movimientos diarios del tipo de cambio en MONEX. El modelo calibrado muestra una alta precisión para comprender la información histórica y realizar proyecciones del tipo de cambio a cinco días. Los resultados sugieren que los movimientos observados del tipo de cambio en 2024 están alineados con su tendencia y que existen factores estacionales significativos que influyen en el tipo de cambio a lo largo del año.

Suggested Citation

  • Jonathan Garita-Garita & César Ulate-Sancho, 2025. "Forecasting Nominal Exchange Rate using Deep Neural Networks," Documentos de Trabajo 2505, Banco Central de Costa Rica.
  • Handle: RePEc:apk:doctra:2505
    as

    Download full text from publisher

    File URL: https://repositorioinvestigaciones.bccr.fi.cr/handle/20.500.12506/504
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • O24 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Trade Policy; Factor Movement; Foreign Exchange Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apk:doctra:2505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Departamento de Investigación Económica (email available below). General contact details of provider: https://edirc.repec.org/data/bccrrcr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.