IDEAS home Printed from https://ideas.repec.org/p/ags/monebs/267764.html
   My bibliography  Save this paper

Mixtures of Tails in Clustered Automobile Collision Claims

Author

Listed:
  • Kalb, Guyonne R. J.
  • Kofman, Paul
  • Vorst, Tom C. F.

Abstract

Knowledge of the tail shape of claim distributions provides important actuarial information. This paper discusses how two techniques commonly used in assessing the most appropriate underlying distribution can be usefully combined. The maximum likelihood approach is theoretically appealing since it is preferable to many other estimators in the sense of best asymptotic normality. Likelihood based tests are, however, not always capable of discriminating among non-nested classes of distributions. Extremal value theory offers an attractive tool to overcome this problem. A much larger set of distribution classes is nested by their tail parameter. This paper shows that both estimation strategies can be usefully combined when the data generating process is characterized by strong clustering in time and size. We find that the extreme value theory is a useful starting point in detecting the appropriate distribution class. Once that has been achieved, the likelihood-based EM-algorithm is proposed to capture the clustering phenomena. Clustering is particularly pervasive in actuarial data. An empirical application to a four-year data set of Dutch automobile collision claims is therefore used to illustrate the approach.

Suggested Citation

Handle: RePEc:ags:monebs:267764
DOI: 10.22004/ag.econ.267764
as

Download full text from publisher

File URL: https://ageconsearch.umn.edu/record/267764/files/monash-200.pdf
Download Restriction: no

File URL: https://ageconsearch.umn.edu/record/267764/files/monash-200.pdf?subformat=pdfa
Download Restriction: no

File URL: https://libkey.io/10.22004/ag.econ.267764?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Keywords

;

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:monebs:267764. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.