IDEAS home Printed from https://ideas.repec.org/p/aap/wpaper/211.html
   My bibliography  Save this paper

Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown

Author

Listed:
  • Sylvia Fruhwirth-Schnatter
  • Hedibert Freitas Lopes

Abstract

We introduce a new and general set of identifiability conditions for factor models which handles the ordering problem associated with current common practice. In addition, the new class of parsimonious Bayesian factor analysis leads to a factor loading matrix representation which is an intuitive and easy to implement factor selection scheme. We argue that the structuring the factor loadings matrix is in concordance with recent trends in applied factor analysis. Our MCMC scheme for posterior inference makes several improvements over the existing alternatives while outlining various strategies for conditional posterior inference in a factor selection scenario. Four applications, two based on synthetic data and two based on well known real data, are introduced to illustrate the applicability and generality of the new class of parsimonious factor models, as well as to highlight features of the proposed sampling schemes.

Suggested Citation

  • Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2014. "Parsimonious Bayesian Factor Analysis when the Number of Factors is Unknown," Business and Economics Working Papers 211, Unidade de Negocios e Economia, Insper.
  • Handle: RePEc:aap:wpaper:211
    as

    Download full text from publisher

    File URL: https://repositorio.insper.edu.br/handle/11224/5942
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    2. Ihara, Masamori & Kano, Yutaka, 1995. "Identifiability of full, marginal, and conditional factor analysis models," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 343-350, June.
    3. James Martin & Roderick McDonald, 1975. "Bayesian estimation in unrestricted factor analysis: A treatment for heywood cases," Psychometrika, Springer;The Psychometric Society, vol. 40(4), pages 505-517, December.
    4. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    5. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yutaka Kano & Masamori Ihara, 1994. "Identification of inconsistent variates in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 5-20, March.
    2. Elena A. Erosheva & S. McKay Curtis, 2017. "Dealing with Reflection Invariance in Bayesian Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 295-307, June.
    3. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    4. Yutaka Kano, 1990. "Noniterative estimation and the choice of the number of factors in exploratory factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 277-291, June.
    5. Robert Kohn & Rachida Ouysse, 2007. "Bayesian Variable Selection of Risk Factors in the APT Model," Discussion Papers 2007-32, School of Economics, The University of New South Wales.
    6. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    7. Creal, Drew & Kim, Jaeho, 2024. "Bayesian estimation of cluster covariance matrices of unknown form," Journal of Econometrics, Elsevier, vol. 241(1).
    8. Kei Hirose & Miyuki Imada, 2018. "Sparse factor regression via penalized maximum likelihood estimation," Statistical Papers, Springer, vol. 59(2), pages 633-662, June.
    9. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    10. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    11. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    12. Benjamin G Schultz & Catherine J Stevens & Peter E Keller & Barbara Tillmann, 2013. "A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    13. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    14. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    15. Yang, Wei & Meyer, Klaus E., 2020. "How do local and foreign firms compete? Competitive actions in an emerging economy," International Business Review, Elsevier, vol. 29(3).
    16. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    17. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    18. Celso Brunetti & Jeffrey H. Harris & Shawn Mankad, 2018. "Bank Holdings and Systemic Risk," Finance and Economics Discussion Series 2018-063, Board of Governors of the Federal Reserve System (U.S.).
    19. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    20. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aap:wpaper:211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca Telles (email available below). General contact details of provider: https://edirc.repec.org/data/inspebr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.