IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320160000036019.html
   My bibliography  Save this book chapter

Causality and Markovianity: Information Theoretic Measures

In: Essays in Honor of Aman Ullah

Author

Listed:
  • Eric Renault
  • Daniela Scidá

Abstract

Many Information Theoretic Measures have been proposed for a quantitative assessment of causality relationships. While Gouriéroux, Monfort, and Renault (1987) had introduced the so-called “Kullback Causality Measures,” extending Geweke’s (1982) work in the context of Gaussian VAR processes, Schreiber (2000) has set a special focus on Granger causality and dubbed the same measure “transfer entropy.” Both papers measure causality in the context of Markov processes. One contribution of this paper is to set the focus on the interplay between measurement of (non)-markovianity and measurement of Granger causality. Both of them can be framed in terms of prediction: how much is the forecast accuracy deteriorated when forgetting some relevant conditioning information? In this paper we argue that this common feature between (non)-markovianity and Granger causality has led people to overestimate the amount of causality because what they consider as a causality measure may also convey a measure of the amount of (non)-markovianity. We set a special focus on the design of measures that properly disentangle these two components. Furthermore, this disentangling leads us to revisit the equivalence between the Sims and Granger concepts of noncausality and the log-likelihood ratio tests for each of them. We argue that Granger causality implies testing for non-nested hypotheses.

Suggested Citation

  • Eric Renault & Daniela Scidá, 2016. "Causality and Markovianity: Information Theoretic Measures," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 349-385, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-905320160000036019
    DOI: 10.1108/S0731-905320160000036019
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000036019/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000036019/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-905320160000036019
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-905320160000036019/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-905320160000036019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Granger causality; Sims causality; Kullback information; Markov property; likelihood ratio test; non-nested hypotheses; C01; C12; C32; C53;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320160000036019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.