IDEAS home Printed from https://ideas.repec.org/f/pma1718.html
   My authors  Follow this author

Marcin Magdziarz

Personal Details

First Name:Marcin
Middle Name:
Last Name:Magdziarz
Suffix:
RePEc Short-ID:pma1718
http://www.im.pwr.wroc.pl/~magdziar/
Terminal Degree:2007 Instytut Matematyki i Informatyki; Politechnika Wrocławska (from RePEc Genealogy)

Affiliation

Hugo Steinhaus Center for Stochastic Methods
Politechnika Wrocławska

Wrocław, Poland
http://www.im.pwr.wroc.pl/~hugo/
RePEc:edi:hspwrpl (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Marcin Magdziarz & Janusz Gajda, 2012. "Anomalous dynamics of Black–Scholes model time-changed by inverse subordinators," HSC Research Reports HSC/12/04, Hugo Steinhaus Center, Wroclaw University of Technology.
  2. Marcin Magdziarz & Sebastian Orzel & Aleksander Weron, 2011. "Option pricing in subdiffusive Bachelier model," HSC Research Reports HSC/11/05, Hugo Steinhaus Center, Wroclaw University of Technology.

Articles

  1. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
  2. Magdziarz, Marcin, 2009. "Correlation cascades, ergodic properties and long memory of infinitely divisible processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3416-3434, October.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Marcin Magdziarz & Janusz Gajda, 2012. "Anomalous dynamics of Black–Scholes model time-changed by inverse subordinators," HSC Research Reports HSC/12/04, Hugo Steinhaus Center, Wroclaw University of Technology.

    Cited by:

    1. Grzegorz Krzy.zanowski & Marcin Magdziarz, 2020. "A computational weighted finite difference method for American and barrier options in subdiffusive Black-Scholes model," Papers 2003.05358, arXiv.org, revised Dec 2020.
    2. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    3. Foad Shokrollahi, 2017. "The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion," Papers 1712.05254, arXiv.org.
    4. Grzegorz Krzy.zanowski & Marcin Magdziarz & {L}ukasz P{l}ociniczak, 2019. "A weighted finite difference method for subdiffusive Black Scholes Model," Papers 1907.00297, arXiv.org, revised Apr 2020.

  2. Marcin Magdziarz & Sebastian Orzel & Aleksander Weron, 2011. "Option pricing in subdiffusive Bachelier model," HSC Research Reports HSC/11/05, Hugo Steinhaus Center, Wroclaw University of Technology.

    Cited by:

    1. Sebastian, Orzeł & Agnieszka, Wyłomańska, 2010. "Calibration of the subdiffusive arithmetic Brownian motion with tempered stable waiting-times," MPRA Paper 28593, University Library of Munich, Germany.
    2. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    3. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    4. Kevin Z. Tong & Allen Liu, 2019. "Option pricing in a subdiffusive constant elasticity of variance (CEV) model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21, June.

Articles

  1. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.

    Cited by:

    1. Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    3. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach to compute the first-passage probability density function in a time-changed Brownian model: Applications in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 330-344.
    4. Hainaut, Donatien & Leonenko, Nikolai, 2020. "Option pricing in illiquid markets: a fractional jump-diffusion approach," LIDAM Discussion Papers ISBA 2020003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    6. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    7. Foad Shokrollahi & Adem Kılıçman & Marcin Magdziarz, 2016. "Pricing European options and currency options by time changed mixed fractional Brownian motion with transaction costs," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, March.
    8. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.
    9. Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    10. Hainaut, Donatien, 2020. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2020002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Kobayashi, Kei, 2016. "Small ball probabilities for a class of time-changed self-similar processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 155-161.
    12. Qing Tang & Fabio Camilli, 2020. "Variational Time-Fractional Mean Field Games," Dynamic Games and Applications, Springer, vol. 10(2), pages 573-588, June.
    13. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    14. Karipova, Gulnur & Magdziarz, Marcin, 2017. "Pricing of basket options in subdiffusive fractional Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 245-253.
    15. Hainaut, Donatien, 2019. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2019027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Kevin Z. Tong & Allen Liu, 2019. "Option pricing in a subdiffusive constant elasticity of variance (CEV) model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21, June.
    17. Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
    18. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    19. Prakash, Amit & Kaur, Hardish, 2017. "Numerical solution for fractional model of Fokker-Planck equation by using q-HATM," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 99-110.
    20. Gajda, Janusz & Magdziarz, Marcin, 2014. "Large deviations for subordinated Brownian motion and applications," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 149-156.
    21. Hainaut, Donatien, 2019. "Fractional Hawkes processes," LIDAM Discussion Papers ISBA 2019016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Marcin Magdziarz should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.