IDEAS home Printed from https://ideas.repec.org/b/spr/isorms/978-0-387-29337-0.html
   My bibliography  Save this book

Markov Chains: Models, Algorithms and Applications

Author

Listed:
  • Wai-Ki Ching

    (The University of Hong Kong)

  • Michael K. Ng

    (Hong Kong Baptist University)

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Wai-Ki Ching & Michael K. Ng, 2006. "Markov Chains: Models, Algorithms and Applications," International Series in Operations Research and Management Science, Springer, number 978-0-387-29337-0, January.
  • Handle: RePEc:spr:isorms:978-0-387-29337-0
    DOI: 10.1007/0-387-29337-X
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Nicolau & Flavio Riedlinger, 2015. "Estimation and inference in multivariate Markov chains," Statistical Papers, Springer, vol. 56(4), pages 1163-1173, November.
    2. Alicja Ganczarek-Gamrot & Józef Stawicki, 2017. "Comparison of certain dynamic estimation methods of Value at Risk on Polish gas market," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 17, pages 81-96.
    3. Suryadeepto Nag & Sankarshan Basu & Siddhartha P. Chakrabarty, 2022. "Modeling the Commodity Prices of Base Metals in Indian Commodity Market Using a Higher Order Markovian Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 159-171, March.
    4. Bruno Damásio & João Nicolau, 2020. "Time Inhomogeneous Multivariate Markov Chains: Detecting and Testing Multiple Structural Breaks Occurring at Unknown," Working Papers REM 2020/0136, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    5. Villacorta, Pablo J. & Verdegay, José L., 2016. "FuzzyStatProb: An R Package for the Estimation of Fuzzy Stationary Probabilities from a Sequence of Observations of an Unknown Markov Chain," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i08).
    6. Józef Stawicki, 2016. "Using the First Passage Times in Markov Chain model to support financial decisions on the stock exchange," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 16, pages 37-47.
    7. Jokar, Meysam & Salarieh, Hassan & Alasty, Aria, 2019. "On the existence of proper stochastic Markov models for statistical reconstruction and prediction of chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 373-382.
    8. Dong-Mei Zhu & Wai-Ki Ching & Robert J. Elliott & Tak-Kuen Siu & Lianmin Zhang, 2017. "A Higher-order interactive hidden Markov model and its applications," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1055-1069, October.
    9. Joseph Gogodze, 2021. "Ranking Demographic Conditions: MCDM Approach," SN Operations Research Forum, Springer, vol. 2(2), pages 1-12, June.
    10. Edward Sandoyan & David Manukyan, 2013. "Exchange Rate Forecast: a New Approach for Armenian Dram," Transition Studies Review, Springer;Central Eastern European University Network (CEEUN), vol. 20(2), pages 159-177, October.
    11. D’Amico, Guglielmo & De Blasis, Riccardo & Petroni, Filippo, 2023. "The Mixture Transition Distribution approach to networks: Evidence from stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    12. Perkin, Joshuah S. & Gido, Keith B. & Al-Ta’ani, Ola & Scoglio, Caterina, 2013. "Simulating fish dispersal in stream networks fragmented by multiple road crossings," Ecological Modelling, Elsevier, vol. 257(C), pages 44-56.
    13. Otero, Dino & Galetti, Diógenes & Mizrahi, Salomon S., 2018. "Modeling vehicular traffic networks. Part I," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 97-110.
    14. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    15. Luis R. Izquierdo & Segismundo S. Izquierdo & José Manuel Galán & José Ignacio Santos, 2009. "Techniques to Understand Computer Simulations: Markov Chain Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-6.
    16. Babak Omidvar & Mohammad Hojjati Malekshah & Hamed Omidvar, 2014. "Failure risk assessment of interdependent infrastructures against earthquake, a Petri net approach: case study—power and water distribution networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1971-1993, April.
    17. Peter Sendfeld, 2008. "Two Queues with Weighted One-Way Overflow," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 531-555, December.
    18. Michael K. Ng & Yuho Chung, 2012. "Double Mover–Stayer model on customer switching in telecommunications industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(8), pages 663-674, December.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isorms:978-0-387-29337-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.