IDEAS home Printed from https://ideas.repec.org/a/zib/zbnmjg/v2y2018i2p17-21.html
   My bibliography  Save this article

Inception Of 3es In Promoting Disaster Resilient Communities Living Near Hydropower Dams Of Peninsular Malaysia

Author

Listed:
  • Sivadass Thiruchelvam

    (Institute of Energy Infrastructure, Universiti Tenaga Nasional)

  • Rahsidi Sabri Muda

    (TNB Research Sdn. Bhd.)

  • Azrul Ghazali

    (Institute of Energy Infrastructure, Universiti Tenaga Nasional)

  • Fatin Faiqah Norkhairi

    (Institute of Energy Infrastructure, Universiti Tenaga Nasional)

  • Kamal Nasharuddin Mustapha

    (Institute of Energy Infrastructure, Universiti Tenaga Nasional)

  • Nora Yahya

    (Institute of Energy Infrastructure, Universiti Tenaga Nasional)

  • Rosnafisah Sulaiman

    (Institute of Informatics and Computing in Energy, Universiti Tenaga Nasional)

  • Zakaria Che Muda

    (Institute of Energy Infrastructure, Universiti Tenaga Nasional)

Abstract

Excessive rain pattern has been the major cause contributing to flooding of low land due to excess water release from affected dams. This deliberate measure has to be taken to prevent the catastrophic effect of a dam break scenario. Therefore, this kind of disaster is considered as a local phenomenon. The local communities are the vulnerable population to face the immediate impact of such disaster. Needless to mention that they are also first emergency responders which is crucial for saving lives. It is therefore imperative for the involved stakeholders to improve local communities’ resilience to dam related disasters. This resonates well with the Hyogo Framework for Action, which identify local communities as integral cornerstone for saving lives and livelihoods. In the case of communities living near main hydropower dams owned by Tenaga Nasional Berhad, an initiative known as Integrated Community Based Disaster Management (ICBDM) has been launched in May 2015. This initiative adopts the concept of 3Es; embrace, educate and empower. The priority is to ensure the vulnerable communities embrace the reality, being educated to face any upcoming situation as well as being empowered to take charge of immediate live saving efforts in the future. The initiative involves five key scopes encompassing technical and non-technical areas and promotes the strategic partnerships between dam owner, authority and the community. It is anticipated that this initiative will build the resilience of communities to dam related disaster.

Suggested Citation

  • Sivadass Thiruchelvam & Rahsidi Sabri Muda & Azrul Ghazali & Fatin Faiqah Norkhairi & Kamal Nasharuddin Mustapha & Nora Yahya & Rosnafisah Sulaiman & Zakaria Che Muda, 2018. "Inception Of 3es In Promoting Disaster Resilient Communities Living Near Hydropower Dams Of Peninsular Malaysia," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 2(2), pages 17-21, August.
  • Handle: RePEc:zib:zbnmjg:v:2:y:2018:i:2:p:17-21
    DOI: 10.26480/mjg.02.2018.17.21
    as

    Download full text from publisher

    File URL: https://myjgeosc.com/download/855/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/mjg.02.2018.17.21?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cools, Jan & Innocenti, Demetrio & O’Brien, Sarah, 2016. "Lessons from flood early warning systems," Environmental Science & Policy, Elsevier, vol. 58(C), pages 117-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vieri Tarchiani & Giovanni Massazza & Maurizio Rosso & Maurizio Tiepolo & Alessandro Pezzoli & Mohamed Housseini Ibrahim & Gaptia Lawan Katiellou & Paolo Tamagnone & Tiziana De Filippis & Leandro Rocc, 2020. "Community and Impact Based Early Warning System for Flood Risk Preparedness: The Experience of the Sirba River in Niger," Sustainability, MDPI, vol. 12(5), pages 1-24, February.
    2. Koirala, Pankaj & Kotani, Koji & Managi, Shunsuke, 2022. "How do farm size and perceptions matter for farmers’ adaptation responses to climate change in a developing country? Evidence from Nepal," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 188-204.
    3. Deolfa Josè Moisès & Nnenesi Kgabi & Olivia Kunguma, 2023. "Integrating “Top-Down” and “Community-Centric” Approaches for Community-Based Flood Early Warning Systems in Namibia," Challenges, MDPI, vol. 14(4), pages 1-17, October.
    4. Katerina Trepekli & Thomas Balstrøm & Thomas Friborg & Bjarne Fog & Albert N. Allotey & Richard Y. Kofie & Lasse Møller-Jensen, 2022. "UAV-borne, LiDAR-based elevation modelling: a method for improving local-scale urban flood risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 423-451, August.
    5. Sagar Ratna Bajracharya & Narendra Raj Khanal & Pashupati Nepal & Sundar Kumar Rai & Pawan Kumar Ghimire & Neera Shrestha Pradhan, 2021. "Community Assessment of Flood Risks and Early Warning System in Ratu Watershed, Koshi Basin, Nepal," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    6. Dehai Zhu & Qian Cao, 2023. "Two determination models of slope failure pattern based on the rainfall intensity–duration early warning threshold," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1917-1931, September.
    7. Sterre Bierens & Kees Boersma & Marc J. C. van den Homberg, 2020. "The Legitimacy, Accountability, and Ownership of an Impact-Based Forecasting Model in Disaster Governance," Politics and Governance, Cogitatio Press, vol. 8(4), pages 445-455.
    8. Pablo Aznar-Crespo & Antonio Aledo & Joaquín Melgarejo-Moreno & Arturo Vallejos-Romero, 2021. "Adapting Social Impact Assessment to Flood Risk Management," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    9. Ihtisham A. Malik & Robert W. Faff & Kam F. Chan, 2020. "Market response of US equities to domestic natural disasters: industry‐based evidence," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3875-3904, December.
    10. Simona Mannucci & Federica Rosso & Alessandro D’Amico & Gabriele Bernardini & Michele Morganti, 2022. "Flood Resilience and Adaptation in the Built Environment: How Far along Are We?," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    11. Deolfa Josè Moisès & Olivia Kunguma, 2022. "Strengthening Namibia’s Flood Early Warning System through a Critical Gap Analysis," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    12. Mustapha Ikirri & Farid Faik & Fatima Zahra Echogdali & Isabel Margarida Horta Ribeiro Antunes & Mohamed Abioui & Kamal Abdelrahman & Mohammed S. Fnais & Abderrahmane Wanaim & Mouna Id-Belqas & Said B, 2022. "Flood Hazard Index Application in Arid Catchments: Case of the Taguenit Wadi Watershed, Lakhssas, Morocco," Land, MDPI, vol. 11(8), pages 1-20, July.
    13. Prabin Rokaya & Sujata Budhathoki & Karl-Erich Lindenschmidt, 2018. "Ice-jam flood research: a scoping review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1439-1457, December.
    14. Cornelius K. A. Pienaah & Evans Batung & Suleman Ansumah Saaka & Kamaldeen Mohammed & Isaac Luginaah, 2023. "Early Warnings and Perceived Climate Change Preparedness among Smallholder Farmers in the Upper West Region of Ghana," Land, MDPI, vol. 12(10), pages 1-19, October.
    15. Juliano Santos Finck & Olavo Correa Pedrollo, 2021. "Facing Losses of Telemetric Signal in Real Time Forecasting of Water Level using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1119-1133, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnmjg:v:2:y:2018:i:2:p:17-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://myjgeosc.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.