IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v12y2009i1p36-54.html
   My bibliography  Save this article

Project management using point graphs

Author

Listed:
  • Mashood Ishaque
  • Abbas K. Zaidi
  • Alexander H. Levis

Abstract

A graph‐based approach for scheduling and monitoring temporal events and activities in a system engineering project is presented. It attempts to overcome some of the limitations of traditional project management approaches by allowing specifications of real‐time milestones, and by breaking the finish‐start barrier between the activities. An example of a residential construction project is used to illustrate the approach. © 2008 Wiley Periodicals, Inc. Syst Eng

Suggested Citation

  • Mashood Ishaque & Abbas K. Zaidi & Alexander H. Levis, 2009. "Project management using point graphs," Systems Engineering, John Wiley & Sons, vol. 12(1), pages 36-54, March.
  • Handle: RePEc:wly:syseng:v:12:y:2009:i:1:p:36-54
    DOI: 10.1002/sys.20107
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.20107
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.20107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salah E. Elmaghraby & Jerzy Kamburowski, 1992. "The Analysis of Activity Networks Under Generalized Precedence Relations (GPRs)," Management Science, INFORMS, vol. 38(9), pages 1245-1263, September.
    2. Dorndorf, Ulrich, 2002. "Project scheduling with time windows: from theory to applications," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 3401, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Elmaghraby, Salah E., 1995. "Activity nets: A guided tour through some recent developments," European Journal of Operational Research, Elsevier, vol. 82(3), pages 383-408, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    2. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    3. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Drexl, Andreas & Nikulin, Yury, 2006. "Fuzzy multicriteria flight gate assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 605, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    6. Ulrich Dorndorf & Erwin Pesch & Toàn Phan-Huy, 2000. "A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints," Management Science, INFORMS, vol. 46(10), pages 1365-1384, October.
    7. Inayat Ullah & Dunbing Tang & Qi Wang & Leilei Yin, 2017. "Least Risky Change Propagation Path Analysis in Product Design Process," Systems Engineering, John Wiley & Sons, vol. 20(4), pages 379-391, July.
    8. Drexl, Andreas & Kimms, Alf, 1998. "Minimizing total weighted completion times subject to precedence constraints by dynamic programming," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 475, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
    10. Grzegorz Waligóra, 2014. "Discrete-continuous project scheduling with discounted cash inflows and various payment models—a review of recent results," Annals of Operations Research, Springer, vol. 213(1), pages 319-340, February.
    11. Bianco, Lucio & Caramia, Massimiliano & Giordani, Stefano, 2022. "Project scheduling with generalized precedence relations: A new method to analyze criticalities and flexibilities," European Journal of Operational Research, Elsevier, vol. 298(2), pages 451-462.
    12. Dodin, B. & Elimam, A.A., 2008. "Integration of equipment planning and project scheduling," European Journal of Operational Research, Elsevier, vol. 184(3), pages 962-980, February.
    13. Caramia, Massimiliano & Guerriero, Francesca, 2011. "A note on the modelling of project networks with time constraints," European Journal of Operational Research, Elsevier, vol. 211(3), pages 666-670, June.
    14. Dodin, Bajis & Elimam, A. A., 1997. "Audit scheduling with overlapping activities and sequence-dependent setup costs," European Journal of Operational Research, Elsevier, vol. 97(1), pages 22-33, February.
    15. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.
    16. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    17. Tyson R. Browning, 2002. "Process integration using the design structure matrix," Systems Engineering, John Wiley & Sons, vol. 5(3), pages 180-193.
    18. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    19. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    20. Masoud Arjmand & Amir Abbas Najafi & Majid Ebrahimzadeh, 2020. "Evolutionary algorithms for multi-objective stochastic resource availability cost problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 935-985, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:12:y:2009:i:1:p:36-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.