IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i2p414-425.html
   My bibliography  Save this article

Environmental Surveillance System Characteristics and Impacts on Confidence About No Undetected Serotype 1 Wild Poliovirus Circulation

Author

Listed:
  • Dominika A. Kalkowska
  • Radboud J. Duintjer Tebbens
  • Kimberly M. Thompson

Abstract

Surveillance for poliovirus during the polio endgame remains uncertain. Building on prior modeling of the potential for undetected poliovirus transmission for conditions like those in Pakistan and Afghanistan, we use a hypothetical model to explore several key characteristics of the poliovirus environmental surveillance (ES) system (e.g., number and quality of sites, catchment sizes, and sampling frequency) and characterize their impacts on the time required to reach high (i.e., 95%) confidence about no circulation (CNC95%) following the last detected case of serotype 1 wild poliovirus. The nature and quality of the existing and future acute flaccid paralysis (AFP) surveillance and ES system significantly impact the estimated CNC95% for places like Pakistan and Afghanistan. The analysis illustrates the tradeoffs between number of sites, sampling frequency, and catchments sizes, and suggests diminishing returns of increasing these three factors beyond a point that depends on site quality and the location of sites. Limitations in data quality and the hypothetical nature of the model reduce the ability to assess the extent to which actual ES systems offer benefits that exceed their costs. Thus, although poliovirus ES may help to reduce the time required to reach high confidence about the absence of undetected circulation, the effect strongly depends on the ability to establish effective ES sites in high‐risk areas. The costs and benefits of ES require further analysis.

Suggested Citation

  • Dominika A. Kalkowska & Radboud J. Duintjer Tebbens & Kimberly M. Thompson, 2019. "Environmental Surveillance System Characteristics and Impacts on Confidence About No Undetected Serotype 1 Wild Poliovirus Circulation," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 414-425, February.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:2:p:414-425
    DOI: 10.1111/risa.13193
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13193
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radboud J. Duintjer Tebbens & Mark A. Pallansch & Dominika A. Kalkowska & Steven G. F. Wassilak & Stephen L. Cochi & Kimberly M. Thompson, 2013. "Characterizing Poliovirus Transmission and Evolution: Insights from Modeling Experiences with Wild and Vaccine‐Related Polioviruses," Risk Analysis, John Wiley & Sons, vol. 33(4), pages 703-749, April.
    2. Radboud J. Duintjer Tebbens & Mark A. Pallansch & Stephen L. Cochi & Derek T. Ehrhardt & Noha H. Farag & Stephen C. Hadler & Lee M. Hampton & Maureen Martinez & Steve G.F. Wassilak & Kimberly M. Thomp, 2018. "Modeling Poliovirus Transmission in Pakistan and Afghanistan to Inform Vaccination Strategies in Undervaccinated Subpopulations," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1701-1717, August.
    3. J. Ranta & T. Hovi & E. Arjas, 2001. "Poliovirus Surveillance by Examining Sewage Water Specimens: Studies on Detection Probability Using Simulation Models," Risk Analysis, John Wiley & Sons, vol. 21(6), pages 1087-1096, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kimberly M. Thompson & Dominika A. Kalkowska, 2021. "Reflections on Modeling Poliovirus Transmission and the Polio Eradication Endgame," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 229-247, February.
    2. Kimberly M. Thompson, 2021. "Modeling and Managing Poliovirus Risks: We are Where we are…," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 223-228, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radboud J. Duintjer Tebbens & Kimberly M. Thompson, 2019. "Evaluation of Proactive and Reactive Strategies for Polio Eradication Activities in Pakistan and Afghanistan," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 389-401, February.
    2. Dominika A. Kalkowska & Radboud J. Duintjer Tebbens & Mark A. Pallansch & Kimberly M. Thompson, 2019. "Modeling Undetected Live Poliovirus Circulation After Apparent Interruption of Transmission: Pakistan and Afghanistan," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 402-413, February.
    3. Dominika A. Kalkowska & Richard Franka & Jeff Higgins & Stephanie D. Kovacs & Joseph C. Forbi & Steven G. F. Wassilak & Mark A. Pallansch & Kimberly M. Thompson, 2021. "Modeling Poliovirus Transmission in Borno and Yobe, Northeast Nigeria," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 289-302, February.
    4. Dominika A. Kalkowska & Kimberly M. Thompson, 2021. "Health and Economic Outcomes Associated with Polio Vaccine Policy Options: 2019–2029," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 364-375, February.
    5. Kimberly M. Thompson & Stephen L. Cochi, 2016. "Modeling and Managing the Risks of Measles and Rubella: A Global Perspective, Part I," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1288-1296, July.
    6. Dominika A. Kalkowska & Mark A. Pallansch & Amanda Wilkinson & Ananda S. Bandyopadhyay & Jennifer L. Konopka‐Anstadt & Cara C. Burns & M. Steven Oberste & Steven G. F. Wassilak & Kamran Badizadegan & , 2021. "Updated Characterization of Outbreak Response Strategies for 2019–2029: Impacts of Using a Novel Type 2 Oral Poliovirus Vaccine Strain," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 329-348, February.
    7. Radboud J. Duintjer Tebbens & Mark A. Pallansch & Stephen L. Cochi & Derek T. Ehrhardt & Noha H. Farag & Stephen C. Hadler & Lee M. Hampton & Maureen Martinez & Steve G.F. Wassilak & Kimberly M. Thomp, 2018. "Modeling Poliovirus Transmission in Pakistan and Afghanistan to Inform Vaccination Strategies in Undervaccinated Subpopulations," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1701-1717, August.
    8. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    9. Kimberly M. Thompson & Mark A. Pallansch & Radboud J. Duintjer Tebbens & Steve G. Wassilak & Stephen L. Cochi, 2013. "Modeling Population Immunity to Support Efforts to End the Transmission of Live Polioviruses," Risk Analysis, John Wiley & Sons, vol. 33(4), pages 647-663, April.
    10. Kamran Badizadegan & Dominika A. Kalkowska & Kimberly M. Thompson, 2023. "Health Economic Analysis of Antiviral Drugs in the Global Polio Eradication Endgame," Medical Decision Making, , vol. 43(7-8), pages 850-862, October.
    11. Radboud J. Duintjer Tebbens & Mark A. Pallansch & Jong‐Hoon Kim & Cara C. Burns & Olen M. Kew & M. Steven Oberste & Ousmane M. Diop & Steven G.F. Wassilak & Stephen L. Cochi & Kimberly M. Thompson, 2013. "Oral Poliovirus Vaccine Evolution and Insights Relevant to Modeling the Risks of Circulating Vaccine‐Derived Polioviruses (cVDPVs)," Risk Analysis, John Wiley & Sons, vol. 33(4), pages 680-702, April.
    12. Dominika A. Kalkowska & Mark A. Pallansch & Steven G. F. Wassilak & Stephen L. Cochi & Kimberly M. Thompson, 2021. "Global Transmission of Live Polioviruses: Updated Dynamic Modeling of the Polio Endgame," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 248-265, February.
    13. Kimberly M. Thompson, 2013. "Modeling Poliovirus Risks and the Legacy of Polio Eradication," Risk Analysis, John Wiley & Sons, vol. 33(4), pages 505-515, April.
    14. Kimberly M. Thompson & Dominika A. Kalkowska, 2021. "Reflections on Modeling Poliovirus Transmission and the Polio Eradication Endgame," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 229-247, February.
    15. Radboud J. Duintjer Tebbens & Kimberly M. Thompson, 2018. "Using integrated modeling to support the global eradication of vaccine‐preventable diseases," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 78-120, January.
    16. Kimberly M. Thompson & Radboud J. Duintjer Tebbens & Mark A. Pallansch & Steven G.F. Wassilak & Stephen L. Cochi, 2015. "Polio Eradicators Use Integrated Analytical Models to Make Better Decisions," Interfaces, INFORMS, vol. 45(1), pages 5-25, February.
    17. Kimberly M. Thompson & Dominika A. Kalkowska & Kamran Badizadegan, 2021. "A Health Economic Analysis for Oral Poliovirus Vaccine to Prevent COVID‐19 in the United States," Risk Analysis, John Wiley & Sons, vol. 41(2), pages 376-386, February.
    18. Kimberly M. Thompson & Nima D. Badizadegan, 2017. "Modeling the Transmission of Measles and Rubella to Support Global Management Policy Analyses and Eradication Investment Cases," Risk Analysis, John Wiley & Sons, vol. 37(6), pages 1109-1131, June.
    19. Kimberly M. Thompson & Cassie L. Odahowski, 2016. "Systematic Review of Measles and Rubella Serology Studies," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1459-1486, July.
    20. Kimberly M. Thompson & Cassie L. Odahowski & James L. Goodson & Susan E. Reef & Robert T. Perry, 2016. "Synthesis of Evidence to Characterize National Measles and Rubella Exposure and Immunization Histories," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1427-1458, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:2:p:414-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.