IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v25y2005i5p1137-1145.html
   My bibliography  Save this article

Influence of Distributional Shape of Substance Parameters on Exposure Model Output

Author

Listed:
  • Kai Lessmann
  • Andreas Beyer
  • Jörg Klasmeier
  • Michael Matthies

Abstract

Uncertainty of environmental concentrations is calculated with the regional multimedia exposure model of EUSES 1.0 by considering probability input distributions for aqueous solubility, vapor pressure, and octanol‐water partition coefficient, Kow. Only reliable experimentally determined data are selected from available literature for eight reference chemicals representing a wide substance property spectrum. Monte Carlo simulations are performed with uniform, triangular, and log‐normal input distributions to assess the influence of the choice of input distribution type on the predicted concentration distributions. The impact of input distribution shapes on output variance exceeds the effect on the output mean by one order of magnitude. Both are affected by influence and uncertainty (i.e., variance) of the input variable as well. Distributional shape has no influence when the sensitivity function of the respective parameter is perfectly linear. For nonlinear relationships, overlap of probability mass of input distribution with influential ranges of the parameter space is important. Differences in computed output distribution are greatest when input distributions differ in the most influential parameter range.

Suggested Citation

  • Kai Lessmann & Andreas Beyer & Jörg Klasmeier & Michael Matthies, 2005. "Influence of Distributional Shape of Substance Parameters on Exposure Model Output," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1137-1145, October.
  • Handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1137-1145
    DOI: 10.1111/j.1539-6924.2005.00669.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2005.00669.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2005.00669.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dale Hattis & David E. Burmaster, 1994. "Assessment of Variability and Uncertainty Distributions for Practical Risk Analyses," Risk Analysis, John Wiley & Sons, vol. 14(5), pages 713-730, October.
    2. Wout Slob, 1994. "Uncertainty Analysis in Multiplicative Models," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 571-576, August.
    3. Bruce S. Binkowitz & Daniel Wartenberg, 2001. "Disparity in Quantitative Risk Assessment: A Review of Input Distributions," Risk Analysis, John Wiley & Sons, vol. 21(1), pages 75-90, February.
    4. Kathrin Fenner & Martin Scheringer & Konrad Hungerbühler, 2003. "Joint Persistence of Transformation Products in Chemicals Assessment: Case Studies and Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 35-53, February.
    5. Edgar G. Hertwich & Thomas E. McKone & William S. Pease, 1999. "Parameter Uncertainty and Variability In Evaluative Fate and Exposure Models," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1193-1204, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    2. Richard R. Lester & Laura C. Green & Igor Linkov, 2007. "Site‐Specific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 635-658, June.
    3. Martí Nadal & Vikas Kumar & Marta Schuhmacher & José L. Domingo, 2008. "Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental Management of Polluted Areas: A Case Study," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 271-286, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. N. Rai & D. Krewski, 1998. "Uncertainty and Variability Analysis in Multiplicative Risk Models," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 37-45, February.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Monika Filipsson & Tomas Öberg & Bo Bergbäck, 2011. "Variability and Uncertainty in Swedish Exposure Factors for Use in Quantitative Exposure Assessments," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 108-119, January.
    4. Joanna Resurreccion & Joost Santos, 2013. "Uncertainty modeling of hurricane-based disruptions to interdependent economic and infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1497-1518, December.
    5. Ken Silver & Richard Clapp, 2006. "Environmental Surveillance at Los Alamos: An Independent Reassessment of Historical Data," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 893-906, August.
    6. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    7. Maged M. Hamed & Philip B. Bedient, 1997. "On the Effect of Probability Distributions of Input Variables in Public Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 97-105, February.
    8. Helen Crabbe & Tony Fletcher & Rebecca Close & Michael J. Watts & E. Louise Ander & Pauline L. Smedley & Neville Q. Verlander & Martin Gregory & Daniel R. S. Middleton & David A. Polya & Mike Studden , 2017. "Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology," IJERPH, MDPI, vol. 14(12), pages 1-26, December.
    9. Richard R. Lester & Laura C. Green & Igor Linkov, 2007. "Site‐Specific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 635-658, June.
    10. W. Slob & M. N. Pieters, 1998. "A Probabilistic Approach for Deriving Acceptable Human Intake Limits and Human Health Risks from Toxicological Studies: General Framework," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 787-798, December.
    11. Schade, Burkhard & Wiesenthal, Tobias, 2011. "Biofuels: A model based assessment under uncertainty applying the Monte Carlo method," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 92-126, January.
    12. Bas Groot Koerkamp & Theo Stijnen & Milton C. Weinstein & M. G. Myriam Hunink, 2011. "The Combined Analysis of Uncertainty and Patient Heterogeneity in Medical Decision Models," Medical Decision Making, , vol. 31(4), pages 650-661, July.
    13. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    14. Paul Price, 2020. "Interindividual Variation in Source‐Specific Doses is a Determinant of Health Impacts of Combined Chemical Exposures," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2572-2583, December.
    15. Gilberto Montibeller & L. Alberto Franco & Ashley Carreras, 2020. "A Risk Analysis Framework for Prioritizing and Managing Biosecurity Threats," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2462-2477, November.
    16. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    17. Abhinav B. Agrawal & Kash Barker & Yacov Y. Haimes, 2011. "Adaptive multiplayer approach for risk‐based decision‐making: 2006 Virginia Gubernatorial Inauguration," Systems Engineering, John Wiley & Sons, vol. 14(4), pages 455-470, December.
    18. Nicholas Z. Muller & Yan N. Oak, 2009. "Characterizing Uncertainty in Air Pollution Damage Estimates," Middlebury College Working Paper Series 0918, Middlebury College, Department of Economics.
    19. Kathrin Fenner & Martin Scheringer & Konrad Hungerbühler, 2003. "Joint Persistence of Transformation Products in Chemicals Assessment: Case Studies and Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 35-53, February.
    20. Anne‐Marie Boulay & Pascal Lesage & Ben Amor & Stephan Pfister, 2021. "Quantifying uncertainty for AWARE characterization factors," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1588-1601, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:25:y:2005:i:5:p:1137-1145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.