IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v34y2023i4p451-466.html
   My bibliography  Save this article

Disparate permafrost terrain changes after a large flood observed from space

Author

Listed:
  • Simon Zwieback
  • Mark McClernan
  • Mikhail Kanevskiy
  • Mark T. Jorgenson
  • Donald A. Walker
  • Qianyu Chang
  • Helena Bergstedt
  • Horacio Toniolo
  • Vladimir E. Romanovsky
  • Franz J. Meyer

Abstract

The 2015 spring flood of the Sagavanirktok River inundated large swaths of tundra as well as infrastructure near Prudhoe Bay, Alaska. Its lasting impact on permafrost, vegetation, and hydrology is unknown but compels attention in light of changing Arctic flood regimes. We combined InSAR and optical satellite observations to quantify subdecadal permafrost terrain changes and identify their controls. While the flood locally induced quasi‐instantaneous ice‐wedge melt, much larger areas were characterized by subtle, spatially variable post‐flood changes. Surface deformation from 2015 to 2019 estimated from ALOS‐2 and Sentinel‐1 InSAR varied substantially within and across terrain units, with greater subsidence on average in flooded locations. Subsidence exceeding 5 cm was locally observed in inundated ice‐rich units and also in inactive floodplains. Overall, subsidence increased with deposit age and thus ground ice content, but many flooded ice‐rich units remained stable, indicating variable drivers of deformation. On average, subsiding ice‐rich locations showed increases in observed greenness and wetness. Conversely, many ice‐poor floodplains greened without deforming. Ice wedge degradation in flooded locations with elevated subsidence was mostly of limited intensity, and the observed subsidence largely stopped within 2 years. Based on remote sensing and limited field observations, we propose that the disparate subdecadal changes were influenced by spatially variable drivers (e.g., sediment deposition, organic layer), controls (ground ice and its degree of protection), and feedback processes. Remote sensing helps quantify the heterogeneous interactions between permafrost, vegetation, and hydrology across permafrost‐affected fluvial landscapes. Interdisciplinary monitoring is needed to improve predictions of landscape dynamics and to constrain sediment, nutrient, and carbon budgets.

Suggested Citation

  • Simon Zwieback & Mark McClernan & Mikhail Kanevskiy & Mark T. Jorgenson & Donald A. Walker & Qianyu Chang & Helena Bergstedt & Horacio Toniolo & Vladimir E. Romanovsky & Franz J. Meyer, 2023. "Disparate permafrost terrain changes after a large flood observed from space," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(4), pages 451-466, October.
  • Handle: RePEc:wly:perpro:v:34:y:2023:i:4:p:451-466
    DOI: 10.1002/ppp.2208
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.2208
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.2208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. François Costard & Emmanuèle Gautier & Pavel Konstantinov & Frederic Bouchard & Antoine Séjourné & Laure Dupeyrat & Alexander Fedorov, 2022. "Thermal regime variability of islands in the Lena River near Yakutsk, eastern Siberia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 33(1), pages 18-31, January.
    2. Yuri Shur & Kenneth M. Hinkel & Frederick E. Nelson, 2005. "The transient layer: implications for geocryology and climate‐change science," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 16(1), pages 5-17, January.
    3. Timothy Ensom & Olga Makarieva & Peter Morse & Douglas Kane & Vladimir Alekseev & Philip Marsh, 2020. "The distribution and dynamics of aufeis in permafrost regions," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 383-395, July.
    4. Y. L. Shur & M. T. Jorgenson, 2007. "Patterns of permafrost formation and degradation in relation to climate and ecosystems," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 7-19, January.
    5. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    6. S. V. Kokelj & C. R. Burn, 2005. "Near‐surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 16(3), pages 291-303, July.
    7. Yuri Shur & Benjamin M. Jones & Mikhail Kanevskiy & Torre Jorgenson & Melissa K. Ward Jones & Daniel Fortier & Eva Stephani & Alexander Vasiliev, 2021. "Fluvio‐thermal erosion and thermal denudation in the yedoma region of northern Alaska: Revisiting the Itkillik River exposure," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 277-298, April.
    8. Weibo Liu & Richard Fortier & John Molson & Jean‐Michel Lemieux, 2021. "A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 468-483, July.
    9. Mark Torre Jorgenson & Guido Grosse, 2016. "Remote Sensing of Landscape Change in Permafrost Regions," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 27(4), pages 324-338, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason R. Paul & Steven V. Kokelj & Jennifer L. Baltzer, 2021. "Spatial and stratigraphic variation of near‐surface ground ice in discontinuous permafrost of the taiga shield," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 3-18, January.
    2. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    3. Georgii A. Alexandrov & Veronika A. Ginzburg & Gregory E. Insarov & Anna A. Romanovskaya, 2021. "CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario," Climatic Change, Springer, vol. 169(3), pages 1-11, December.
    4. Samuel Gagnon & Michel Allard, 2021. "Modeled (1990–2100) variations in active‐layer thickness and ice‐wedge activity near Salluit, Nunavik (Canada)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 447-467, July.
    5. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    6. Taro Nakai & Tetsuya Hiyama & Ayumi Kotani & Yoshihiro Iijima & Takeshi Ohta & Trofim C. Maximov, 2023. "Stochastic representation of spatial variability in thaw depth in permafrost boreal forests," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 34(4), pages 481-493, October.
    7. E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
    8. Alexey Desyatkin & Matrena Okoneshnikova & Pavel Fedorov & Alexandra Ivanova & Nikolay Filippov & Roman Desyatkin, 2024. "The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia," Land, MDPI, vol. 13(8), pages 1-16, July.
    9. Wei Shan & Lisha Qiu & Ying Guo & Chengcheng Zhang & Zhichao Xu & Shuai Liu, 2022. "Spatiotemporal Distribution Characteristics of Fire Scars Further Prove the Correlation between Permafrost Swamp Wildfires and Methane Geological Emissions," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    10. Xin Zhang & Lin Zhou & Yuqi Liu, 2018. "Modeling Land Use Changes and their Impacts on Non-Point Source Pollution in a Southeast China Coastal Watershed," IJERPH, MDPI, vol. 15(8), pages 1-15, July.
    11. Michel Paquette & Daniel Fortier & Melissa Lafrenière & Warwick F. Vincent, 2020. "Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 472-486, October.
    12. Felix C. Nwaishi & Matthew Q. Morison & Brandon Van Huizen & Myroslava Khomik & Richard M. Petrone & Merrin L. Macrae, 2020. "Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 509-523, October.
    13. Aleksandr Zhirkov & Maksim Sivtsev & Vasylii Lytkin & Anatolii Kirillin & Antoine Séjourné & Zhi Wen, 2023. "An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia," Land, MDPI, vol. 12(1), pages 1-17, January.
    14. Jean E. Holloway & Antoni G. Lewkowicz & Thomas A. Douglas & Xiaoying Li & Merritt R. Turetsky & Jennifer L. Baltzer & Huijun Jin, 2020. "Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(3), pages 371-382, July.
    15. George Buslaev & Pavel Tsvetkov & Alexander Lavrik & Andrey Kunshin & Elizaveta Loseva & Dmitry Sidorov, 2021. "Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change," Resources, MDPI, vol. 10(12), pages 1-15, December.
    16. Feng Cheng & Carmala Garzione & Xiangzhong Li & Ulrich Salzmann & Florian Schwarz & Alan M. Haywood & Julia Tindall & Junsheng Nie & Lin Li & Lin Wang & Benjamin W. Abbott & Ben Elliott & Weiguo Liu &, 2022. "Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Mohamed Abdouli & Sami Hammami, 2020. "Economic Growth, Environment, FDI Inflows, and Financial Development in Middle East Countries: Fresh Evidence from Simultaneous Equation Models," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(2), pages 479-511, June.
    18. Sarah M. Strand & Hanne H. Christiansen & Margareta Johansson & Jonas Åkerman & Ole Humlum, 2021. "Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 47-58, January.
    19. Fengjiao Li & Juanle Wang & Pengfei Li & Avirmed Dashtseren, 2025. "Review of Permafrost Degradation in the Mongolian Plateau," Land, MDPI, vol. 14(2), pages 1-21, February.
    20. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:34:y:2023:i:4:p:451-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.