IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i1p197-d1028461.html
   My bibliography  Save this article

An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia

Author

Listed:
  • Aleksandr Zhirkov

    (Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia)

  • Maksim Sivtsev

    (Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia)

  • Vasylii Lytkin

    (Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia
    The Institute for Humanities Research and Indigenous Studies of the North, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677000, Russia)

  • Anatolii Kirillin

    (Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia)

  • Antoine Séjourné

    (University Paris-Saclay, Gif-sur-Yvette, 91190 Paris, France)

  • Zhi Wen

    (State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract

Rapid permafrost degradation is observed in northern regions as a result of climate change and expanding economic development. Associated increases in active layer depth lead to thermokarst development, resulting in irregular surface topography. In Central Yakutia, significant areas of the land surface have been deteriorated by thermokarst; however, no mitigation or land rehabilitation efforts are undertaken. This paper presents the results of numerical modeling of the thermal response of permafrost to changes in the active layer hydrothermal regime using field data from the village of Amga, Republic of Sakha (Yakutia), and mathematical analysis. The results suggest that restoring a thick ice-enriched layer will require increasing the pre-winter soil moisture contents in order to increase the effective heat capacity of the active layer. Snow removal or compaction during the winter is recommended to maximize permafrost cooling. The thickness of the restored transition layer varies from 0.3 to 1.3 m depending on soil moisture contents in the active layer. The modeling results demonstrate that damaged lands can be restored through a set of measures to lower the subsurface temperatures. A combination of the insulating layer (forest vegetation) and the high heat capacity layer (transition layer) in the atmosphere–ground system would be more effective in providing stable geocryological conditions.

Suggested Citation

  • Aleksandr Zhirkov & Maksim Sivtsev & Vasylii Lytkin & Anatolii Kirillin & Antoine Séjourné & Zhi Wen, 2023. "An Assessment of the Possibility of Restoration and Protection of Territories Disturbed by Thermokarst in Central Yakutia, Eastern Siberia," Land, MDPI, vol. 12(1), pages 1-17, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:197-:d:1028461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/1/197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/1/197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuri Shur & Kenneth M. Hinkel & Frederick E. Nelson, 2005. "The transient layer: implications for geocryology and climate‐change science," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 16(1), pages 5-17, January.
    2. Alexander N. Fedorov & Go Iwahana & Pavel Y. Konstantinov & Takashi Machimura & Radomir N. Argunov & Peter V. Efremov & Larry M.C. Lopez & Fumiaki Takakai, 2017. "Variability of Permafrost and Landscape Conditions Following Clear Cutting of Larch Forest in Central Yakutia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 28(1), pages 331-338, January.
    3. H. Jonas Åkerman & Margareta Johansson, 2008. "Thawing permafrost and thicker active layers in sub‐arctic Sweden," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 19(3), pages 279-292, July.
    4. Vasylii Lytkin & Alexander Suleymanov & Lilia Vinokurova & Stepan Grigorev & Victoriya Golomareva & Svyatoslav Fedorov & Aitalina Kuzmina & Igor Syromyatnikov, 2021. "Influence of Permafrost Landscapes Degradation on Livelihoods of Sakha Republic (Yakutia) Rural Communities," Land, MDPI, vol. 10(2), pages 1-21, January.
    5. Aleksandr Zhirkov & Petr Permyakov & Zhi Wen & Anatolii Kirillin, 2021. "Influence of Rainfall Changes on the Temperature Regime of Permafrost in Central Yakutia," Land, MDPI, vol. 10(11), pages 1-19, November.
    6. Yoshihiro Iijima & Alexander N. Fedorov & Hotaek Park & Kazuyoshi Suzuki & Hironori Yabuki & Trofim C. Maximov & Tetsuo Ohata, 2010. "Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(1), pages 30-41, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah M. Strand & Hanne H. Christiansen & Margareta Johansson & Jonas Åkerman & Ole Humlum, 2021. "Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum‐Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(1), pages 47-58, January.
    2. Rúna Í. Magnússon & Alexandra Hamm & Sergey V. Karsanaev & Juul Limpens & David Kleijn & Andrew Frampton & Trofim C. Maximov & Monique M. P. D. Heijmans, 2022. "Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Vasylii Lytkin & Alexander Suleymanov & Lilia Vinokurova & Stepan Grigorev & Victoriya Golomareva & Svyatoslav Fedorov & Aitalina Kuzmina & Igor Syromyatnikov, 2021. "Influence of Permafrost Landscapes Degradation on Livelihoods of Sakha Republic (Yakutia) Rural Communities," Land, MDPI, vol. 10(2), pages 1-21, January.
    4. Marat I. Petrov & Alexander N. Fedorov & Pavel Y. Konstantinov & Radomir N. Argunov, 2022. "Variability of Permafrost and Landscape Conditions Following Forest Fires in the Central Yakutian Taiga Zone," Land, MDPI, vol. 11(4), pages 1-11, March.
    5. Aleksandr Zhirkov & Petr Permyakov & Zhi Wen & Anatolii Kirillin, 2021. "Influence of Rainfall Changes on the Temperature Regime of Permafrost in Central Yakutia," Land, MDPI, vol. 10(11), pages 1-19, November.
    6. Samuel Gagnon & Michel Allard, 2021. "Modeled (1990–2100) variations in active‐layer thickness and ice‐wedge activity near Salluit, Nunavik (Canada)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(3), pages 447-467, July.
    7. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    8. Alyona A. Shestakova & Alexander N. Fedorov & Yaroslav I. Torgovkin & Pavel Y. Konstantinov & Nikolay F. Vasyliev & Svetlana V. Kalinicheva & Vera V. Samsonova & Tetsuya Hiyama & Yoshihiro Iijima & Ho, 2021. "Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS," Land, MDPI, vol. 10(5), pages 1-18, April.
    9. Stanislav Saas Ksenofontov & Andrey N. Petrov, 2024. "Global Change Impacts on Indigenous Sustainability in Sakha Republic: A Synthesis of Knowledge," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    10. Komi S Messan & Robert M Jones & Stacey J Doherty & Karen Foley & Thomas A Douglas & Robyn A Barbato, 2020. "The role of changing temperature in microbial metabolic processes during permafrost thaw," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    11. Victor Makarov & Grigory Savvinov & Lyudmila Gavrilieva & Anna Gololobova, 2020. "The Effect of Grazing on the Temperature Regime of the Alas Soils of Central Yakutia," Land, MDPI, vol. 9(10), pages 1-15, October.
    12. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    14. Alexey Maslakov & Larisa Zotova & Nina Komova & Mikhail Grishchenko & Dmitry Zamolodchikov & Gennady Zelensky, 2021. "Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change," Land, MDPI, vol. 10(5), pages 1-14, April.
    15. Julian B. Murton, 2021. "What and where are periglacial landscapes?," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 32(2), pages 186-212, April.
    16. Michel Paquette & Daniel Fortier & Melissa Lafrenière & Warwick F. Vincent, 2020. "Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 472-486, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:1:p:197-:d:1028461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.