IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v48y2001i1p79-97.html
   My bibliography  Save this article

Opportunistic retooling of a flexible machine subject to failure

Author

Listed:
  • Nagraj Balakrishnan
  • Amiya K. Chakravarty

Abstract

A set of jobs can be processed without interruption by a flexible machine only if the set of tools required by all jobs can be loaded in the tool magazine. However, in practice the total number of tools required by a job set would exceed the tool magazine capacity. In such situations, the job set has to be carefully partitioned at the start of the production run such that each partition can be processed without interruption. During the production run, if there are unscheduled machine downtimes due to machine failure, this provides an additional opportunity to optimally retool the magazine for a smaller job set consisting of just the unprocessed jobs. In this paper, we study job sequencing rules that allow us to minimize the total expected cost of machine down time due to machine failures and magazine retooling, assuming a dynamic re‐sequencing of the unprocessed jobs after each machine failure. Using these rules, we develop a branch‐and‐bound heuristic that allows us to solve problems of reasonable size. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 79–97, 2001

Suggested Citation

  • Nagraj Balakrishnan & Amiya K. Chakravarty, 2001. "Opportunistic retooling of a flexible machine subject to failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(1), pages 79-97, February.
  • Handle: RePEc:wly:navres:v:48:y:2001:i:1:p:79-97
    DOI: 10.1002/1520-6750(200102)48:13.0.CO;2-Q
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(200102)48:13.0.CO;2-Q
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(200102)48:13.0.CO;2-Q?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn E. Stecke, 1983. "Formulation and Solution of Nonlinear Integer Production Planning Problems for Flexible Manufacturing Systems," Management Science, INFORMS, vol. 29(3), pages 273-288, March.
    2. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part II: Minimization of the Number of Switching Instants," Operations Research, INFORMS, vol. 36(5), pages 778-784, October.
    3. Christopher S. Tang & Eric V. Denardo, 1988. "Models Arising from a Flexible Manufacturing Machine, Part I: Minimization of the Number of Tool Switches," Operations Research, INFORMS, vol. 36(5), pages 767-777, October.
    4. W. K. Chiu, 1976. "Economic Design of np Charts for Processes Subject to a Multiplicity of Assignable Causes," Management Science, INFORMS, vol. 23(4), pages 404-411, December.
    5. William P. Pierskalla & John A. Voelker, 1976. "A survey of maintenance models: The control and surveillance of deteriorating systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 353-388, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher S. Tang, 2017. "OM Forum—Three Simple Approaches for Young Scholars to Identify Relevant and Novel Research Topics in Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 338-346, July.
    2. Chakravarty, Amiya K. & Balakrishnan, Nagraj, 1997. "Job sequencing rules for minimizing the expected makespan in flexible machines," European Journal of Operational Research, Elsevier, vol. 96(2), pages 274-288, January.
    3. Matzliach, Barouch & Tzur, Michal, 2000. "Storage management of items in two levels of availability," European Journal of Operational Research, Elsevier, vol. 121(2), pages 363-379, March.
    4. M. Selim Akturk & Jay B. Ghosh & Evrim D. Gunes, 2003. "Scheduling with tool changes to minimize total completion time: A study of heuristics and their performance," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(1), pages 15-30, February.
    5. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    6. Atan, Tankut S. & Pandit, Ram, 1996. "Auxiliary tool allocation in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 642-659, March.
    7. Sodhi, Manbir S. & Lamond, Bernard F. & Gautier, Antoine & Noel, Martin, 2001. "Heuristics for determining economic processing rates in a flexible manufacturing system," European Journal of Operational Research, Elsevier, vol. 129(1), pages 105-115, February.
    8. Crama, Yves, 1997. "Combinatorial optimization models for production scheduling in automated manufacturing systems," European Journal of Operational Research, Elsevier, vol. 99(1), pages 136-153, May.
    9. Chakravarty, Amiya K. & Balakrishnan, Nagraj, 1995. "Impact of job-sequence on the down-time of a deteriorating flexible machine," European Journal of Operational Research, Elsevier, vol. 87(2), pages 299-315, December.
    10. Renato de Matta & Vernon Ning Hsu & Timothy J. Lowe, 1999. "Capacitated selection problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 19-37, February.
    11. Furrer, Martina & Mütze, Torsten, 2017. "An algorithmic framework for tool switching problems with multiple objectives," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1003-1016.
    12. Yves Crama & Joris van de Klundert, 1999. "Worst‐case performance of approximation algorithms for tool management problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 445-462, August.
    13. Marc Peeters & Zeger Degraeve, 2004. "The Co-Printing Problem: A Packing Problem with a Color Constraint," Operations Research, INFORMS, vol. 52(4), pages 623-638, August.
    14. Calmels, Dorothea, 2022. "An iterated local search procedure for the job sequencing and tool switching problem with non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 297(1), pages 66-85.
    15. Dang, Quang-Vinh & van Diessen, Thijs & Martagan, Tugce & Adan, Ivo, 2021. "A matheuristic for parallel machine scheduling with tool replacements," European Journal of Operational Research, Elsevier, vol. 291(2), pages 640-660.
    16. Moshe Dror & Mohamed Haouari, 2000. "Generalized Steiner Problems and Other Variants," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 415-436, December.
    17. Konak, Abdullah & Kulturel-Konak, Sadan & Azizoglu, Meral, 2008. "Minimizing the number of tool switching instants in Flexible Manufacturing Systems," International Journal of Production Economics, Elsevier, vol. 116(2), pages 298-307, December.
    18. Khadija Hadj Salem & Vincent Jost & Yann Kieffer & Luc Libralesso & Stéphane Mancini, 2022. "Minimizing makespan under data prefetching constraints for embedded vision systems: a study of optimization methods and their performance," Operational Research, Springer, vol. 22(3), pages 1639-1673, July.
    19. Crama, Yves & Flippo, Olaf E. & van de Klundert, Joris & Spieksma, Frits C. R., 1997. "The assembly of printed circuit boards: A case with multiple machines and multiple board types," European Journal of Operational Research, Elsevier, vol. 98(3), pages 457-472, May.
    20. Akturk, M. Selim & Avci, Selcuk, 1996. "Tool allocation and machining conditions optimization for CNC machines," European Journal of Operational Research, Elsevier, vol. 94(2), pages 335-348, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:48:y:2001:i:1:p:79-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.