IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v38y1991i2p241-259.html
   My bibliography  Save this article

Estimating travel distances by the weighted lp norm

Author

Listed:
  • Jack Brimberg
  • Robert F. Love

Abstract

Empirical distance functions are used to estimate actual travel distances in a transportation network, to verify the accuracy of road mileage data, and to formulate continuous location models. In this article we consider the problem of fitting the weighted lp norm to a given network. Mathematical properties are derived for two fitting criteria found in the literature. These properties are used to develop an accurate and efficient methodology to solve for the best‐fitting parameter values. The directional bias of the lp norm is analyzed for its effect on the range of search for the optimal p value. Concepts and methodology are applied to a case study of the road system in Southern Ontario. In conclusion, a general framework for other types of distance functions is briefly discussed.

Suggested Citation

  • Jack Brimberg & Robert F. Love, 1991. "Estimating travel distances by the weighted lp norm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 241-259, April.
  • Handle: RePEc:wly:navres:v:38:y:1991:i:2:p:241-259
    DOI: 10.1002/1520-6750(199104)38:23.0.CO;2-Z
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199104)38:23.0.CO;2-Z
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199104)38:23.0.CO;2-Z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James E. Ward & Richard E. Wendell, 1985. "Using Block Norms for Location Modeling," Operations Research, INFORMS, vol. 33(5), pages 1074-1090, October.
    2. Berens, Wolfgang & Korling, Franz-Josef, 1985. "Estimating road distances by mathematical functions," European Journal of Operational Research, Elsevier, vol. 21(1), pages 54-56, July.
    3. Love, Robert F. & Morris, James G., 1988. "On estimating road distances by mathematical functions," European Journal of Operational Research, Elsevier, vol. 36(2), pages 251-253, August.
    4. Peter Kolesar & Warren Walker & Jack Hausner, 1975. "Determining the Relation between Fire Engine Travel Times and Travel Distances in New York City," Operations Research, INFORMS, vol. 23(4), pages 614-627, August.
    5. J. E. Ward & R. E. Wendell, 1980. "Technical Note—A New Norm for Measuring Distance Which Yields Linear Location Problems," Operations Research, INFORMS, vol. 28(3-part-ii), pages 836-844, June.
    6. Richard L. Francis, 1967. "Letter to the Editor—Some Aspects of a Minimax Location Problem," Operations Research, INFORMS, vol. 15(6), pages 1163-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dillmann, Roland & Becker, Burkhard & Beckefeld, Volker, 1996. "Practical aspects of route planning for magazine and newspaper wholesalers," European Journal of Operational Research, Elsevier, vol. 90(1), pages 1-12, April.
    2. Brimberg, Jack & Juel, Henrik, 1998. "A bicriteria model for locating a semi-desirable facility in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 144-151, April.
    3. Dubois, Nicolas & Semet, Frederic, 1995. "Estimation and determination of shortest path length in a road network with obstacles," European Journal of Operational Research, Elsevier, vol. 83(1), pages 105-116, May.
    4. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dillmann, Roland & Becker, Burkhard & Beckefeld, Volker, 1996. "Practical aspects of route planning for magazine and newspaper wholesalers," European Journal of Operational Research, Elsevier, vol. 90(1), pages 1-12, April.
    2. Enrique R. Venta & Francis J. Nourie, 1989. "Facility location on a grid with a diagonal line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(5), pages 709-717, October.
    3. Brimberg, Jack & Love, Robert F. & Walker, John H., 1995. "The effect of axis rotation on distance estimation," European Journal of Operational Research, Elsevier, vol. 80(2), pages 357-364, January.
    4. Alpaydin, Ethem & Altinel, I. Kuban & Aras, Necati, 1996. "Parametric distance functions vs. nonparametric neural networks for estimating road travel distances," European Journal of Operational Research, Elsevier, vol. 93(2), pages 230-243, September.
    5. H Younies & G O Wesolowsky, 2007. "Planar maximal covering location problem under block norm distance measure," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 740-750, June.
    6. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    7. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    8. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    9. Nan Dong & Xiaohuan Yang & Hongyan Cai & Liming Wang, 2015. "A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    10. Gilbert Laporte & Juan Mesa & Francisco Ortega & Ignacio Sevillano, 2005. "Maximizing Trip Coverage in the Location of a Single Rapid Transit Alignment," Annals of Operations Research, Springer, vol. 136(1), pages 49-63, April.
    11. Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
    12. Raymond F. Boykin & Mardyros Kazarians & Raymond A. Freeman, 1986. "Comparative Fire Risk Study of PCB Transformers," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 477-488, December.
    13. Kafer, Barbara & Nickel, Stefan, 2001. "Error bounds for the approximative solution of restricted planar location problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 67-85, November.
    14. Schilling, D. A. & Rosing, K. E. & ReVelle, C. S., 2000. "Network distance characteristics that affect computational effort in p-median location problems," European Journal of Operational Research, Elsevier, vol. 127(3), pages 525-536, December.
    15. María Pérez & Pascual Hernández & Blas Pelegrín, 2004. "On price competition in location-price models with spatially separated markets," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 351-374, December.
    16. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    17. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    18. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    19. Uster, Halit & Love, Robert F., 2001. "On the directional bias of the lbp-norm," European Journal of Operational Research, Elsevier, vol. 128(3), pages 664-673, February.
    20. Gert Wanka & Oleg Wilfer, 2017. "Duality results for nonlinear single minimax location problems via multi-composed optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 401-439, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:38:y:1991:i:2:p:241-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.