IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v27y2007i11p1085-1105.html
   My bibliography  Save this article

Forecasting performance of extreme‐value volatility estimators

Author

Listed:
  • Vipul
  • Joshy Jacob

Abstract

This study evaluates the forecasting performance of extreme‐value volatility estimators for the equity‐based Nifty Index using two‐scale realized volatility. This benchmark mitigates the effect of microstructure noise in the realized volatility. Extreme‐value estimates with relatively simple forecasting methods provide substantially better short‐term and long‐term forecasts, compared to historical volatility. The higher efficiency of extreme‐value estimators is primarily responsible for this improvement. The extent of possible improvement in forecasts is likely to be economically significant for applications like options pricing. By including extremevalue estimators, the forecasting performance of generalized autoregressive conditional heteroscedasticity (GARCH) can also be improved. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27: 1085–1105, 2007

Suggested Citation

  • Vipul & Joshy Jacob, 2007. "Forecasting performance of extreme‐value volatility estimators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(11), pages 1085-1105, November.
  • Handle: RePEc:wly:jfutmk:v:27:y:2007:i:11:p:1085-1105
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jui-Cheng Hung & Tien-Wei Lou & Yi-Hsien Wang & Jun-De Lee, 2013. "Evaluating and improving GARCH-based volatility forecasts with range-based estimators," Applied Economics, Taylor & Francis Journals, vol. 45(28), pages 4041-4049, October.
    2. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    4. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    7. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    8. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    9. Huayun Jiang & Neda Todorova & Eduardo Roca & Jen-Je Su, 2017. "Dynamics of volatility transmission between the U.S. and the Chinese agricultural futures markets," Applied Economics, Taylor & Francis Journals, vol. 49(34), pages 3435-3452, July.
    10. Gu, Chen & Kurov, Alexander, 2020. "Informational role of social media: Evidence from Twitter sentiment," Journal of Banking & Finance, Elsevier, vol. 121(C).
    11. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    12. Alok Dixit & Shivam Singh, 2018. "Ad-Hoc Black–Scholes vis-à-vis TSRV-based Black–Scholes: Evidence from Indian Options Market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 57-88, March.
    13. Neda Todorova, 2012. "Volatility estimators based on daily price ranges versus the realized range," Applied Financial Economics, Taylor & Francis Journals, vol. 22(3), pages 215-229, February.
    14. I‐Ming Jiang & Jui‐Cheng Hung & Chuan‐San Wang, 2014. "Volatility Forecasts: Do Volatility Estimators and Evaluation Methods Matter?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(11), pages 1077-1094, November.
    15. S. Garg & Vipul, 2014. "Volatility forecasting performance of two-scale realized volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1111-1121, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:27:y:2007:i:11:p:1085-1105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.