IDEAS home Printed from https://ideas.repec.org/a/wly/intnem/v35y2025i2ne70013.html
   My bibliography  Save this article

An Adaptive Routing Architecture for IoT Multipath Video Transmission

Author

Listed:
  • Fabiano Bhering
  • Debora Oliveira
  • Célio Albuquerque
  • Diego Passos
  • Katia Obraczka

Abstract

Video applications in wireless multihop Internet of Things (IoT) scenarios can benefit from multipath routing strategies to meet their often stringent quality of service (QoS) requirements. However, the dynamics of the underlying network and video service requirements call for a multipath routing fabric that can dynamically adapt to changing conditions. In this paper, we present a wireless multipath routing architecture that is able to adapt to varying network topology conditions and video traffic characteristics by finding new paths dynamically, resulting in enhanced end user's quality of experience. Additionally, we provide an overview of the IoT wireless video application landscape and a taxonomy of the state‐of‐the‐art in route selection mechanisms for multipath routing.

Suggested Citation

  • Fabiano Bhering & Debora Oliveira & Célio Albuquerque & Diego Passos & Katia Obraczka, 2025. "An Adaptive Routing Architecture for IoT Multipath Video Transmission," International Journal of Network Management, John Wiley & Sons, vol. 35(2), March.
  • Handle: RePEc:wly:intnem:v:35:y:2025:i:2:n:e70013
    DOI: 10.1002/nem.70013
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nem.70013
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nem.70013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helena Ramalhinho Lourenço & Olivier C. Martin & Thomas Stützle, 2019. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 129-168, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Alvarez, Aldair & Miranda, Pedro & Rohmer, S.U.K., 2022. "Production routing for perishable products," Omega, Elsevier, vol. 111(C).
    3. Paredes-Belmar, Germán & Montero, Elizabeth & Lüer-Villagra, Armin & Marianov, Vladimir & Araya-Sassi, Claudio, 2022. "Vehicle routing for milk collection with gradual blending: A case arising in Chile," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1403-1416.
    4. Calmels, Dorothea, 2022. "An iterated local search procedure for the job sequencing and tool switching problem with non-identical parallel machines," European Journal of Operational Research, Elsevier, vol. 297(1), pages 66-85.
    5. Yinghui Wu & Haoran Du & Huixin Song, 2024. "An Iterated Local Search Heuristic for the Multi-Trip Vehicle Routing Problem with Multiple Time Windows," Mathematics, MDPI, vol. 12(11), pages 1-16, May.
    6. Eduardo Queiroga & Rian G. S. Pinheiro & Quentin Christ & Anand Subramanian & Artur A. Pessoa, 2021. "Iterated local search for single machine total weighted tardiness batch scheduling," Journal of Heuristics, Springer, vol. 27(3), pages 353-438, June.
    7. Albert Einstein Fernandes Muritiba & Tibérius O. Bonates & Stênio Oliveira Da Silva & Manuel Iori, 2021. "Branch-and-Cut and Iterated Local Search for the Weighted k -Traveling Repairman Problem: An Application to the Maintenance of Speed Cameras," Transportation Science, INFORMS, vol. 55(1), pages 139-159, 1-2.
    8. Chen-Kun Tsung & Tseng-Fung Ho & Hsuan-Yu Huang & Shu-Hui Yang & Po-Nien Tsou & Ming-Cheng Tsai & Yi-Ping Huang, 2020. "Computing the Assembly Guidance for Maximizing Product Quality in the Virtual Assembly," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    9. Zandieh, Fatemeh & Ghannadpour, Seyed Farid & Mazdeh, Mohammad Mahdavi, 2024. "New integrated routing and surveillance model with drones and charging station considerations," European Journal of Operational Research, Elsevier, vol. 313(2), pages 527-547.
    10. Máximo, Vinícius R. & Nascimento, Mariá C.V., 2021. "A hybrid adaptive iterated local search with diversification control to the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1108-1119.
    11. Wu, Song & Yang, Wei & Hanafi, Saïd & Wilbaut, Christophe & Wang, Yang, 2024. "Iterated local search with ejection chains for the space-free multi-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 873-886.
    12. Gandra, Vinícius S.M. & Çalık, Hatice & Toffolo, Túlio A.M. & Carvalho, Marco Antonio M. & Vanden Berghe, Greet, 2022. "The vessel swap-body routing problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 354-369.
    13. Kadri Sylejmani & Vigan Abdurrahmani & Arben Ahmeti & Egzon Gashi, 2024. "Solving the tourist trip planning problem with attraction patterns using meta-heuristic techniques," Information Technology & Tourism, Springer, vol. 26(4), pages 633-678, December.
    14. Bernardino, Raquel & Paias, Ana, 2024. "The family capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 314(3), pages 836-853.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:35:y:2025:i:2:n:e70013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.