IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i4p731-744.html
   My bibliography  Save this article

Performance of Cu‐Fe‐based oxygen carrier in a CLC process based on fixed bed reactors

Author

Listed:
  • Qiang Tian
  • Lixin Che
  • Bin Ding
  • Qianwei Wang
  • Qingquan Su

Abstract

To explore the application of chemical‐looping combustion (CLC) to the distributed medium‐ small‐scale hot water and steam gas‐fueled boilers, a CLC process based on two fixed bed reactors (FBRs) has been proposed. A Cu‐Fe‐based oxygen carrier (OC) was studied to meet the requirements for this process. Results showed that Cu30‐Fe50/Al20 was exothermic both in the reduction step and in the oxidation step, and showed a quite large operating temperature window of 600–900°C. At the lower temperature side, it showed good low temperature reactivity, and at the higher temperature side, it showed strong resistance to carbon deposition, agglomeration, and sintering. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Qiang Tian & Lixin Che & Bin Ding & Qianwei Wang & Qingquan Su, 2017. "Performance of Cu‐Fe‐based oxygen carrier in a CLC process based on fixed bed reactors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 731-744, August.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:4:p:731-744
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1684
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
    2. Han, Lu & Bollas, George M., 2016. "Chemical-looping combustion in a reverse-flow fixed bed reactor," Energy, Elsevier, vol. 102(C), pages 669-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Qiang Tian & Lixin Che & Bin Ding & Qianwei Wang & Qingquan Su, 2018. "Performance of a Cu–Fe‐based oxygen carrier combined with a Ni‐based oxygen carrier in a chemical‐looping combustion process based on fixed‐bed reactors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 542-556, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    2. Qiang Tian & Lixin Che & Bin Ding & Qianwei Wang & Qingquan Su, 2018. "Performance of a Cu–Fe‐based oxygen carrier combined with a Ni‐based oxygen carrier in a chemical‐looping combustion process based on fixed‐bed reactors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 542-556, June.
    3. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Pietro Bartocci & Alberto Abad & Aldo Bischi & Lu Wang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Haiping Yang & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized Chemical Looping Combustor to Be Coupled to a Gas Turbine: Part 1, the Air Reactor," Energies, MDPI, vol. 16(5), pages 1-20, February.
    5. Mayer, Karl & Penthor, Stefan & Pröll, Tobias & Hofbauer, Hermann, 2015. "The different demands of oxygen carriers on the reactor system of a CLC plant – Results of oxygen carrier testing in a 120kWth pilot plant," Applied Energy, Elsevier, vol. 157(C), pages 323-329.
    6. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    7. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    8. Voitic, Gernot & Nestl, Stephan & Lammer, Michael & Wagner, Julian & Hacker, Viktor, 2015. "Pressurized hydrogen production by fixed-bed chemical looping," Applied Energy, Elsevier, vol. 157(C), pages 399-407.
    9. Xing Chen & Shuai Zhang & Rui Xiao & Peng Li, 2017. "Modification of traditionally impregnated Fe 2 O 3 /Al 2 O 3 oxygen carriers by ultrasonic method and their performance in chemical looping combustion," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 65-77, February.
    10. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    11. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    12. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    13. Penthor, Stefan & Zerobin, Florian & Mayer, Karl & Pröll, Tobias & Hofbauer, Hermann, 2015. "Investigation of the performance of a copper based oxygen carrier for chemical looping combustion in a 120kW pilot plant for gaseous fuels," Applied Energy, Elsevier, vol. 145(C), pages 52-59.
    14. Jacobs, M. & Van Noyen, J. & Larring, Y. & Mccann, M. & Pishahang, M. & Amini, S. & Ortiz, M. & Galluci, F. & Sint-Annaland, M.V. & Tournigant, D. & Louradour, E. & Snijkers, F., 2015. "Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor," Applied Energy, Elsevier, vol. 157(C), pages 374-381.
    15. Gu, Zhenhua & Li, Kongzhai & Wang, Hua & Qing, Shan & Zhu, Xing & Wei, Yonggang & Cheng, Xianming & Yu, He & Cao, Yan, 2016. "Bulk monolithic Ce–Zr–Fe–O/Al2O3 oxygen carriers for a fixed bed scheme of the chemical looping combustion: Reactivity of oxygen carrier," Applied Energy, Elsevier, vol. 163(C), pages 19-31.
    16. Zeng, Jimin & Xiao, Rui & Yuan, Jun, 2021. "High-quality syngas production from biomass driven by chemical looping on a PY-GA coupled reactor," Energy, Elsevier, vol. 214(C).
    17. Güleç, Fatih & Meredith, Will & Sun, Cheng-Gong & Snape, Colin E., 2019. "Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides," Energy, Elsevier, vol. 173(C), pages 658-666.
    18. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    19. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    20. Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1-16, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:4:p:731-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.