IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v6y2016i1p19-33.html
   My bibliography  Save this article

On the use of Darcy's law and invasion‐percolation approaches for modeling large‐scale geologic carbon sequestration

Author

Listed:
  • Curtis M. Oldenburg
  • Sumit Mukhopadhyay
  • Abdullah Cihan

Abstract

Most large‐scale flow and transport simulations for geologic carbon sequestration (GCS) applications are carried out using simulators that solve flow equations arising from Darcy's law. Recently, the computational advantages of invasion‐percolation (IP) modeling approaches have been presented. We show that both the Darcy's‐law‐ and the gravity‐capillary balance solved by IP approaches can be derived from the same multiphase continuum momentum equation. More specifically, Darcy's law arises from assuming creeping flow with no viscous momentum transfer to stationary solid grains, while it is assumed in the IP approach that gravity and capillarity are the dominant driving forces in a quasi‐static two‐phase (or more) system. There is a long history of use of Darcy's law for large‐scale GCS simulation. However, simulations based on Darcy's law commonly include significant numerical dispersion as users employ large grid blocks to keep run times practical. In contrast, the computational simplicity of IP approaches allows large‐scale models to honor fine‐scale hydrostratigraphic details of the storage formation which makes these IP models suitable for analyzing the impact of small‐scale heterogeneities on flow. However, the lack of time‐dependence in the IP models is a significant disadvantage, while the ability of Darcy's law to simulate a range of flows from single‐phase‐ and pressure‐gradient‐driven flows to buoyant multiphase gravity‐capillary flow is a significant advantage. We believe on balance that Darcy's law simulations should be the preferred approach to large‐scale GCS simulations. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd

Suggested Citation

  • Curtis M. Oldenburg & Sumit Mukhopadhyay & Abdullah Cihan, 2016. "On the use of Darcy's law and invasion‐percolation approaches for modeling large‐scale geologic carbon sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(1), pages 19-33, February.
  • Handle: RePEc:wly:greenh:v:6:y:2016:i:1:p:19-33
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1564
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pruess, Karsten & García, Julio & Kovscek, Tony & Oldenburg, Curt & Rutqvist, Jonny & Steefel, Carl & Xu, Tianfu, 2004. "Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2," Energy, Elsevier, vol. 29(9), pages 1431-1444.
    2. Sallie Greenberg & Robert J. Finley, 2014. "An overview of the Illinois Basin – Decatur Project," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(5), pages 571-579, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajayi, Temitope & Awolayo, Adedapo & Gomes, Jorge S. & Parra, Humberto & Hu, Jialiang, 2019. "Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi," Energy, Elsevier, vol. 185(C), pages 653-670.
    2. Fugang Wang & Jing Jing & Tianfu Xu & Yanlin Yang & Guangrong Jin, 2016. "Impacts of stratum dip angle on CO 2 geological storage amount and security," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 682-694, October.
    3. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Ismail Ismail & Vassilis Gaganis, 2023. "Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review," Clean Technol., MDPI, vol. 5(2), pages 1-29, May.
    5. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    6. Jie Bao & Zhijie Xu & Yilin Fang, 2015. "A coupled discrete element and finite element model for multiscale simulation of geological carbon sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 474-486, August.
    7. Benjamin Court & Thomas Elliot & Joseph Dammel & Thomas Buscheck & Jeremy Rohmer & Michael Celia, 2012. "Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO 2 sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 569-599, August.
    8. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    9. Hossein Jahediesfanjani & Peter D. Warwick & Steven T. Anderson, 2017. "3D Pressure†limited approach to model and estimate CO2 injection and storage capacity: saline Mount Simon Formation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(6), pages 1080-1096, December.
    10. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    11. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    12. Lehua Pan & Nicolas Spycher & Christine Doughty & Karsten Pruess, 2017. "ECO2N V2.0: A TOUGH2 fluid property module for modeling CO 2 ‐H 2 O‐NACL systems to elevated temperatures of up to 300°C," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 313-327, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:6:y:2016:i:1:p:19-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.