IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i5p999-1026.html
   My bibliography  Save this article

The production cost analysis of oil palm waste activated carbon: a pilot‐scale evaluation

Author

Listed:
  • Jia Yen Lai
  • Lock Hei Ngu

Abstract

Oil palm waste has been widely used in activated carbon (AC) by applying various activation methods and degrees of processing. The aim of this paper was to conduct technoeconomic assessment for pilot‐scale oil palm based AC (OPbAC) production to evaluate cost of these methods using different activation and post‐activation surface modification processes. Based on the assumptions in earlier publications, the pilot‐scale evaluation was estimated by summation of fixed capital investment with total annual operating costs according to the percentages of total equipment cost reported in the literature. The proposed investment in constructing and operating three different types of AC manufacturing facility is investigated by the net present value (NPV) method. The evaluation revealed that the physical activation process required lower fixed capital investment ($2.12 million) and annual operating cost ($1.53 million) compared to chemical and physiochemical processes with respective total fixed capital investment ($6.32 million) and total annual operating cost ($2.57 million). The NPV results reported that positive NPVs are evaluated for all three manufacturing facilities and the proposed investments associated with these facilities are acceptable. The highest production cost related to chemical activation with ZnCl2 in the presence or absence of an oxidizing gas was estimated to be $3.24 per kg AC, whereas the lowest production cost of $2.72 per kg AC was found for steam activation that required no additional purchase of commodity chemicals. On the other hand, a modification by impregnation using magnesium oxide estimates the highest additional modified AC product cost at $8.60 per kg AC given its high purchased chemical price. These findings are beneficial in providing preliminary insights in terms of economic aspects for OPbAC production. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Jia Yen Lai & Lock Hei Ngu, 2020. "The production cost analysis of oil palm waste activated carbon: a pilot‐scale evaluation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 999-1026, October.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:999-1026
    DOI: 10.1002/ghg.2020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2020
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    2. Umar, Mohd Shaharin & Jennings, Philip & Urmee, Tania, 2013. "Strengthening the palm oil biomass Renewable Energy industry in Malaysia," Renewable Energy, Elsevier, vol. 60(C), pages 107-115.
    3. Nurhayati Abdullah & Fauziah Sulaiman, 2013. "The Oil Palm Wastes in Malaysia," Chapters, in: Miodrag Darko Matovic (ed.), Biomass Now - Sustainable Growth and Use, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    3. Thomas, Blessen Skariah & Kumar, Sanjeev & Arel, Hasan Sahan, 2017. "Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 550-561.
    4. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    5. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    6. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    8. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    9. Tan, Sie Ting & Hashim, Haslenda & Abdul Rashid, Ahmad H. & Lim, Jeng Shiun & Ho, Wai Shin & Jaafar, Abu Bakar, 2018. "Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue," Energy, Elsevier, vol. 146(C), pages 169-178.
    10. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    11. Sharifah Mohammad & Siti Baidurah & Naofumi Kamimura & Seitaro Matsuda & Nurul Alia Syufina Abu Bakar & Nik Nur Izzati Muhamad & Aizat Hisham Ahmad & Debbie Dominic & Takaomi Kobayashi, 2021. "Fermentation of Palm Oil Mill Effluent in the Presence of Lysinibacillus sp. LC 556247 to Produce Alternative Biomass Fuel," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    12. Ahmad Yousef Areiqat & Asaad Hameed Al-Ali & Hussein Mohammed Al-Yaseen, 2019. "Entrepreneurship in palm fronds recycling: a Jordanian case," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 1694-1703, June.
    13. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    14. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    15. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    16. Mukrim, Anis & Masih, Mansur, 2017. "The impact of macroeconomic variables on the crude palm oil export: Malaysian evidence based on ARDL approach," MPRA Paper 111740, University Library of Munich, Germany.
    17. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    18. Norfadhilah Hamzah & Koji Tokimatsu & Kunio Yoshikawa, 2019. "Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review," Sustainability, MDPI, vol. 11(4), pages 1-23, February.
    19. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:999-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.