IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i6ne70039.html

Skew Gaussian Markov Random Fields Under Decomposable Graphs

Author

Listed:
  • Hamid Zareifard
  • Majid Jafari Khaledi

Abstract

Conditional independence and sparsity are pivotal concepts in parsimonious statistical models such as Markov random fields. Statistical modeling in this subject has been limited to the Gaussianity assumption so far, partly due to the difficulty in preserving the Markov property. As the data often exhibit non‐normality, we applied a multivariate closed skew normal distribution to introduce a novel skew Gaussian Markov random field with respect to a decomposable graph. Subsequently, after investigating the main probabilistic features of the introduced random process, we specifically focused on modeling autocorrelated data online, and thereafter, an intrinsic version of the skew Gaussian Markov random field was presented. We applied Markov chain Monte Carlo algorithms for Bayesian inference. The identifiability of the parameters was investigated using a simulation study. Finally, the usefulness of our methodology was demonstrated by analyzing two datasets.

Suggested Citation

  • Hamid Zareifard & Majid Jafari Khaledi, 2025. "Skew Gaussian Markov Random Fields Under Decomposable Graphs," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:6:n:e70039
    DOI: 10.1002/env.70039
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70039
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang, Emily L. & Cressie, Noel, 2011. "Bayesian Inference for the Spatial Random Effects Model," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 972-983.
    2. Bolin, David & Lindström, Johan & Eklundh, Lars & Lindgren, Finn, 2009. "Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2885-2896, June.
    3. Bondon, Pascal, 2009. "Estimation of autoregressive models with epsilon-skew-normal innovations," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1761-1776, September.
    4. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    5. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    6. Oh, Man-Suk & Shin, Dong Wan & Kim, Han Joon, 2002. "Bayesian analysis of regression models with spatially correlated errors and missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 387-400, June.
    7. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    2. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    3. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    4. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    5. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    6. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    7. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
    8. Bolin, David & Wallin, Jonas & Lindgren, Finn, 2019. "Latent Gaussian random field mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 80-93.
    9. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    10. Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
    11. Tarik Faouzi & Emilio Porcu & Igor Kondrashuk & Moreno Bevilacqua, 2024. "Convergence arguments to bridge cauchy and matérn covariance functions," Statistical Papers, Springer, vol. 65(2), pages 645-660, April.
    12. Korte-Stapff, Moritz & Karvonen, Toni & Moulines, Éric, 2025. "Smoothness estimation for Whittle–Matérn processes on closed Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 189(C).
    13. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    14. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    15. Paul B. May & Andrew O. Finley & Ralph O. Dubayah, 2024. "A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 671-694, December.
    16. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    17. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Bolin, David & Lindgren, Finn, 2013. "A comparison between Markov approximations and other methods for large spatial data sets," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 7-21.
    19. Osafu Augustine Egbon & Omodolapo Somo-Aina & Ezra Gayawan, 2021. "Spatial Weighted Analysis of Malnutrition Among Children in Nigeria: A Bayesian Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 495-523, December.
    20. Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:6:n:e70039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.