A Comparative Analysis of Short Time Series Processing Methods
Author
Abstract
Suggested Citation
DOI: 10.2478/v10313-012-0009-4
Download full text from publisher
References listed on IDEAS
- Armstrong, J. Scott & Collopy, Fred & Yokum, J. Thomas, 2005.
"Decomposition by causal forces: a procedure for forecasting complex time series,"
International Journal of Forecasting, Elsevier, vol. 21(1), pages 25-36.
- J. S. Armstrong, 2005. "Decomposition by Causal Forces: A Procedure for Forecasting Complex Time Series," General Economics and Teaching 0502015, University Library of Munich, Germany.
- Enrique de Alba & Manuel Mendoza, 2007. "Bayesian Forecasting Methods for Short Time Series," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 8, pages 41-44, Fall.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Muñoz Negrón, David F. & Muñoz Medina, Diego F., 2009. "Bayesian Forecastings For Automobile Parts Using Stochastic Simulation," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 14(27), pages 7-20.
- Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
- Germán Rubio Guerrero, 2017. "Perspectiva multivariante de los pronósticos en las pymes industriales de Ibagué (Colombia)," Revista Facultad de Ciencias Económicas, Universidad Militar Nueva Granada, vol. 25(2), pages 25-40, September.
- Anqiang Huang & Kin Keung Lai & Han Qiao & Shouyang Wang & Zhenji Zhang, 2018. "Does Interval Knowledge Sharpen Forecasting Models? Evidence from China’s Typical Ports," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 467-483, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:itmasc:v:15:y:2012:i:1:p:65-69:n:9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.