IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v53y2020i3p326-340.html
   My bibliography  Save this article

A Bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics

Author

Listed:
  • Minhee Kim
  • Kaibo Liu

Abstract

Deep learning has emerged as a powerful tool to model complicated relationships between inputs and outputs in various fields including degradation modeling and prognostics. Existing deep learning-based prognostic approaches are often used in a black-box manner and provide only point estimations of remaining useful life. However, accurate interval estimations of the remaining useful life are crucial to understand the stochastic nature of degradation processes and perform reliable risk analysis and maintenance decision making. This study proposes a novel Bayesian deep learning framework that incorporates general characteristics of degradation processes and provides the interval estimations of remaining useful life. The proposed method enjoys several unique advantages: (i) providing a general approach by not assuming any particular type of degradation processes nor the availability of domain-specific prior knowledge such as a failure threshold; (ii) offering the interval estimations of the remaining useful life; (iii) systematically modeling two types of uncertainties embedded in prognostics; and (iv) exhibiting great prognostic performance and wide applicability to complex systems that may involve multiple sensor signals, multiple failure modes, and multiple operational conditions. Numerical studies demonstrate improved prognostic performance and practicality of the proposed method over benchmark approaches. Additional numerical results including the analysis of sensitivity and computational costs are given in the online supplemental materials.

Suggested Citation

  • Minhee Kim & Kaibo Liu, 2020. "A Bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics," IISE Transactions, Taylor & Francis Journals, vol. 53(3), pages 326-340, December.
  • Handle: RePEc:taf:uiiexx:v:53:y:2020:i:3:p:326-340
    DOI: 10.1080/24725854.2020.1766729
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2020.1766729
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2020.1766729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhee Kim & Todd Allen & Kaibo Liu, 2023. "Covariate Dependent Sparse Functional Data Analysis," INFORMS Joural on Data Science, INFORMS, vol. 2(1), pages 81-98, April.
    2. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Wang, Yilin & Li, Yuanxiang & Zhang, Yuxuan & Lei, Jia & Yu, Yifei & Zhang, Tongtong & Yang, Yongshen & Zhao, Honghua, 2024. "Incorporating prior knowledge into self-supervised representation learning for long PHM signal," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Zhou, Taotao & Zhang, Laibin & Han, Te & Droguett, Enrique Lopez & Mosleh, Ali & Chan, Felix T.S., 2023. "An uncertainty-informed framework for trustworthy fault diagnosis in safety-critical applications," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Dehghan Shoorkand, Hassan & Nourelfath, Mustapha & Hajji, Adnène, 2024. "A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Wang, Jiaolong & Zhang, Fode & Zhang, Jianchuan & Liu, Wen & Zhou, Kuang, 2023. "A flexible RUL prediction method based on poly-cell LSTM with applications to lithium battery data," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:53:y:2020:i:3:p:326-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.