IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i9p1805-1817.html
   My bibliography  Save this article

New distributed fusion filtering algorithm based on covariances over sensor networks with random packet dropouts

Author

Listed:
  • R. Caballero-Águila
  • A. Hermoso-Carazo
  • J. Linares-Pérez

Abstract

This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.

Suggested Citation

  • R. Caballero-Águila & A. Hermoso-Carazo & J. Linares-Pérez, 2017. "New distributed fusion filtering algorithm based on covariances over sensor networks with random packet dropouts," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(9), pages 1805-1817, July.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:9:p:1805-1817
    DOI: 10.1080/00207721.2017.1289568
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2017.1289568
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2017.1289568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Linares-Pérez & R. Caballero-Águila & I. García-Garrido, 2014. "Optimal linear filter design for systems with correlation in the measurement matrices and noises: recursive algorithm and applications," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1548-1562, July.
    2. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.
    2. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    3. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    4. Caballero-Águila, R. & García-Garrido, I. & Linares-Pérez, J., 2016. "Quadratic estimation problem in discrete-time stochastic systems with random parameter matrices," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 308-320.
    5. P.R. Ouyang & V. Pano & T. Dam, 2015. "PID position domain control for contour tracking," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(1), pages 111-124, January.
    6. M. Kang & J. Cheong & H.M. Do & Y. Son & S.-I. Niculescu, 2017. "A practical iterative PID tuning method for mechanical systems using parameter chart," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(13), pages 2887-2900, October.
    7. Md. Majharul Haque & Suraiya Pervin & Anowar Hossain & Zerina Begum, 2020. "Approaches and Trends of Automatic Bangla Text Summarization: Challenges and Opportunities," International Journal of Technology Diffusion (IJTD), IGI Global, vol. 11(4), pages 67-83, October.
    8. Mourad Kchaou & Ahmed El-Hajjaji, 2017. "Resilient sliding mode control for discrete-time descriptor fuzzy systems with multiple time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 288-301, January.
    9. Changyin Sun & Qing Wang & Yao Yu, 2017. "Robust output containment control of multi-agent systems with unknown heterogeneous nonlinear uncertainties in directed networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1173-1181, April.
    10. Hassan Ghiti Sarand & Bahram Karimi, 2016. "Synchronisation of high-order MIMO nonlinear systems using distributed neuro-adaptive control," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2214-2224, July.
    11. Zhouhua Peng & Dan Wang & Gang Sun & Hao Wang, 2014. "Distributed cooperative stabilisation of continuous-time uncertain nonlinear multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2031-2041, October.
    12. Bömmel, Nadja & Heineck, Guido, 2020. "Revisiting the Causal Effect of Education on Political Participation and Interest," IZA Discussion Papers 13954, Institute of Labor Economics (IZA).
    13. Zhengmin Liu & Peide Liu, 2017. "Intuitionistic uncertain linguistic partitioned Bonferroni means and their application to multiple attribute decision-making," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(5), pages 1092-1105, April.
    14. Herbon, Avi, 2021. "An integrated manufacturer-buyer chain with bounded production cycle length," Operations Research Perspectives, Elsevier, vol. 8(C).
    15. Olivier Cailloux & Tommi Tervonen & Boris Verhaegen & François Picalausa, 2014. "A data model for algorithmic multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 217(1), pages 77-94, June.
    16. R. Sakthivel & V. Nithya & Yong-Ki Ma & Chao Wang, 2018. "Finite-Time Nonfragile Dissipative Filter Design for Wireless Networked Systems with Sensor Failures," Complexity, Hindawi, vol. 2018, pages 1-13, October.
    17. Hasan Salih Suliman Al-Qudah, 2016. "Application Level of Internal Audit Systems applied at Government Hospitals in North of Jordan," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(12), pages 187-187, November.
    18. Long Cheng & Hanlei Wang & Zeng-Guang Hou & Min Tan, 2016. "Reaching a consensus in networks of high-order integral agents under switching directed topologies," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(8), pages 1966-1981, June.
    19. Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
    20. Carlos Bianchi & Pablo Galaso & Sergio Palomeque, 2020. "Invention and Collaboration Networks in Latin America: Evidence from Patent Data," Documentos de Trabajo (working papers) 20-04, Instituto de Economía - IECON.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:9:p:1805-1817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.